You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
128 lines
4.6 KiB
128 lines
4.6 KiB
/*Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/shuffle_channel_op.h"
|
|
#include <memory>
|
|
#include <string>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class ShuffleChannelOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"Input(X) of ShuffleChannelOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Output(Out) of ShuffleChannelOp should not be null.");
|
|
|
|
auto input_dims = ctx->GetInputDim("X");
|
|
PADDLE_ENFORCE(input_dims.size() == 4, "The layout of input is NCHW.");
|
|
|
|
ctx->SetOutputDim("Out", input_dims);
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "X"),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class ShuffleChannelOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X",
|
|
"(Tensor, default Tensor<float>), "
|
|
"the input feature data of ShuffleChannelOp, the layout is NCHW.");
|
|
AddOutput("Out",
|
|
"(Tensor, default Tensor<float>), the output of "
|
|
"ShuffleChannelOp. The layout is NCHW.");
|
|
AddAttr<int>("group", "the number of groups.")
|
|
.SetDefault(1)
|
|
.AddCustomChecker([](const int& group) {
|
|
PADDLE_ENFORCE_GE(group, 1, "group should be larger than 0.");
|
|
});
|
|
|
|
AddComment(R"DOC(
|
|
Shuffle Channel operator
|
|
This opearator shuffles the channels of input x.
|
|
It divide the input channels in each group into several subgroups,
|
|
and obtain a new order by selecting element from every subgroup one by one.
|
|
|
|
Shuffle channel operation makes it possible to build more powerful structures
|
|
with multiple group convolutional layers.
|
|
please get more information from the following paper:
|
|
https://arxiv.org/pdf/1707.01083.pdf
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class ShuffleChannelGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
auto input_dims = ctx->GetInputDim(framework::GradVarName("Out"));
|
|
PADDLE_ENFORCE(input_dims.size() == 4, "The layout of input is NCHW.");
|
|
|
|
ctx->SetOutputDim(framework::GradVarName("X"), input_dims);
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
|
|
ctx, framework::GradVarName("Out")),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class ShuffleChannelGradMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op) const override {
|
|
op->SetType("shuffle_channel_grad");
|
|
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
|
|
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
|
|
op->SetAttrMap(this->Attrs());
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(shuffle_channel, ops::ShuffleChannelOp,
|
|
ops::ShuffleChannelOpMaker,
|
|
ops::ShuffleChannelGradMaker<paddle::framework::OpDesc>,
|
|
ops::ShuffleChannelGradMaker<paddle::imperative::OpBase>);
|
|
|
|
REGISTER_OPERATOR(shuffle_channel_grad, ops::ShuffleChannelGradOp);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
shuffle_channel,
|
|
ops::ShuffleChannelOpKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::ShuffleChannelOpKernel<paddle::platform::CPUDeviceContext, double>);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
shuffle_channel_grad,
|
|
ops::ShuffleChannelGradOpKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::ShuffleChannelGradOpKernel<paddle::platform::CPUDeviceContext,
|
|
double>);
|