You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
96 lines
3.3 KiB
96 lines
3.3 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include <algorithm>
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/operators/math/math_function.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class ShuffleChannelOpKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* input = ctx.Input<framework::Tensor>("X");
|
|
auto* output = ctx.Output<framework::Tensor>("Out");
|
|
int group = ctx.Attr<int>("group");
|
|
|
|
auto input_dims = input->dims();
|
|
auto num = input_dims[0];
|
|
auto channel = input_dims[1];
|
|
auto height = input_dims[2];
|
|
auto weight = input_dims[3];
|
|
|
|
auto feature_map_size = channel * height * weight;
|
|
auto sp_sz = height * weight;
|
|
int group_row = group;
|
|
int group_column = channel / group_row;
|
|
|
|
const T* input_data = input->data<T>();
|
|
T* output_data = output->mutable_data<T>(ctx.GetPlace());
|
|
for (int n = 0; n < num; ++n) {
|
|
for (int i = 0; i < group_row; ++i) {
|
|
for (int j = 0; j < group_column; ++j) {
|
|
const T* p_i = input_data + n * feature_map_size +
|
|
(i * group_column + j) * sp_sz;
|
|
T* p_o =
|
|
output_data + n * feature_map_size + (j * group_row + i) * sp_sz;
|
|
memcpy(p_o, p_i, sizeof(int) * sp_sz);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class ShuffleChannelGradOpKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* output_grad =
|
|
ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
|
|
auto* input_grad =
|
|
ctx.Output<framework::Tensor>(framework::GradVarName("X"));
|
|
|
|
int group = ctx.Attr<int>("group");
|
|
|
|
const auto& input_dims = input_grad->dims();
|
|
auto num = input_dims[0];
|
|
auto channel = input_dims[1];
|
|
auto height = input_dims[2];
|
|
auto weight = input_dims[3];
|
|
auto feature_map_size = channel * height * weight;
|
|
auto sp_sz = height * weight;
|
|
|
|
int group_row = group;
|
|
int group_column = channel / group_row;
|
|
|
|
T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
|
|
const T* output_grad_data = output_grad->data<T>();
|
|
for (int n = 0; n < num; ++n) {
|
|
for (int i = 0; i < group_row; ++i) {
|
|
for (int j = 0; j < group_column; ++j) {
|
|
const T* p_i = output_grad_data + n * feature_map_size +
|
|
(i * group_column + j) * sp_sz;
|
|
T* p_o = input_grad_data + n * feature_map_size +
|
|
(j * group_row + i) * sp_sz;
|
|
memcpy(p_o, p_i, sizeof(int) * sp_sz);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|