You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
315 lines
13 KiB
315 lines
13 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/softmax_with_cross_entropy_op.h"
|
|
#include <memory>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class SoftmaxWithCrossEntropyOpMaker
|
|
: public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("Logits",
|
|
"(Tensor, default: Tensor<float>), The input tensor of unscaled "
|
|
"log probabilities, whose dimension :attr:`axis` should be scaled "
|
|
"by softmax.");
|
|
AddInput(
|
|
"Label",
|
|
"(Tensor) The input tensor of groud truth label. If :attr:`soft_label` "
|
|
"is set to false, Label is a Tensor<int64> in same shape with "
|
|
"Input(Logits) except the shape in dimension :attr:`axis` as 1. If "
|
|
"soft_label is set to true, Label is a Tensor<float/double> in same "
|
|
"shape with Input(Logits).");
|
|
AddOutput(
|
|
"Softmax",
|
|
"(Tensor, default: Tensor<float>), A tensor in same shape with "
|
|
"Input(Logits). "
|
|
"The outputs value of softmax activation by given the input batch, "
|
|
"which will be used in backward calculation.")
|
|
.AsIntermediate();
|
|
AddOutput("Loss",
|
|
"(Tensor, default: Tensor<float>), A tensor in same shape with "
|
|
"Input(Logits) "
|
|
"except the shape in dimension :attr:`axis` as 1. The cross "
|
|
"entropy loss.");
|
|
AddAttr<bool>(
|
|
"soft_label",
|
|
"(bool, default: false), A flag to indicate whether to interpretant "
|
|
"the given labels as soft labels.")
|
|
.SetDefault(false);
|
|
AddAttr<bool>(
|
|
"numeric_stable_mode",
|
|
"(bool, default: true), A flag to indicate whether to use more "
|
|
"numerically stable algorithm. This flag is only valid when "
|
|
"soft_label is false and GPU is used.")
|
|
.SetDefault(true);
|
|
AddAttr<int>(
|
|
"ignore_index",
|
|
"(int, default -100), Specifies a target value that is ignored and"
|
|
"does not contribute to the input gradient. Only valid if soft_label"
|
|
"is set to False")
|
|
.SetDefault(-100);
|
|
AddAttr<int>("axis",
|
|
"The dimension index of Input(Logits) to perform softmax,"
|
|
"default -1 for last dimension")
|
|
.SetDefault(-1);
|
|
AddComment(R"DOC(
|
|
Softmax With Cross Entropy Operator.
|
|
|
|
Cross entropy loss with softmax is used as the output layer extensively. This
|
|
operator computes the softmax normalized values for each row of the input
|
|
tensor, after which cross-entropy loss is computed. This provides a more
|
|
numerically stable gradient.
|
|
|
|
Because this operator performs a softmax on logits internally, it expects
|
|
unscaled logits. This operator should not be used with the output of
|
|
softmax operator since that would produce incorrect results.
|
|
|
|
When the attribute soft_label is set false, this operators expects mutually
|
|
exclusive hard labels, each sample in a batch is in exactly one class with a
|
|
probability of 1.0. Each sample in the batch will have a single label.
|
|
|
|
The equation is as follows:
|
|
|
|
1) Hard label (one-hot label, so every sample has exactly one class)
|
|
|
|
$$Loss_j = -\text{Logit}_{Label_j} +
|
|
\log\left(\sum_{i=0}^{K}\exp(\text{Logit}_i)\right),
|
|
j = 1,..., K$$
|
|
|
|
2) Soft label (each sample can have a distribution over all classes)
|
|
|
|
$$Loss_j = -\sum_{i=0}^{K}\text{Label}_i \left(\text{Logit}_i -
|
|
\log\left(\sum_{i=0}^{K}\exp(\text{Logit}_i)\right)\right),
|
|
j = 1,...,K$$
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class SoftmaxWithCrossEntropyOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasInput("Logits"), true,
|
|
platform::errors::InvalidArgument("Input(Logits) should be not null."));
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasInput("Label"), true,
|
|
platform::errors::InvalidArgument("Input(Label) should be not null."));
|
|
|
|
PADDLE_ENFORCE_EQ(ctx->HasOutput("Softmax"), true,
|
|
platform::errors::InvalidArgument(
|
|
"Output(Softmax) should be not null."));
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasOutput("Loss"), true,
|
|
platform::errors::InvalidArgument("Output(Loss) should be not null."));
|
|
|
|
auto axis = ctx->Attrs().Get<int>("axis");
|
|
auto logits_dims = ctx->GetInputDim("Logits");
|
|
auto labels_dims = ctx->GetInputDim("Label");
|
|
auto logits_rank = logits_dims.size();
|
|
PADDLE_ENFORCE_GE(axis, -logits_rank,
|
|
platform::errors::InvalidArgument(
|
|
"Attr(axis) value should be in range [-R, R-1], "
|
|
"R is the rank of Input(Logits)."));
|
|
PADDLE_ENFORCE_LT(axis, logits_rank,
|
|
platform::errors::InvalidArgument(
|
|
"Attr(axis) value should be in range [-R, R-1], "
|
|
"R is the rank of Input(Logits)."));
|
|
|
|
axis = CanonicalAxis(axis, logits_rank);
|
|
for (int i = 0; i < logits_rank; i++) {
|
|
if (i != axis) {
|
|
if (ctx->IsRuntime() || (logits_dims[i] > 0 && labels_dims[i] > 0)) {
|
|
PADDLE_ENFORCE_EQ(logits_dims[i], labels_dims[i],
|
|
platform::errors::InvalidArgument(
|
|
"Input(Logits) and Input(Label) should in "
|
|
"same shape in dimensions except axis."));
|
|
}
|
|
}
|
|
}
|
|
|
|
auto numeric_stable_mode = ctx->Attrs().Get<bool>("numeric_stable_mode");
|
|
if (axis != logits_rank - 1) {
|
|
PADDLE_ENFORCE_EQ(numeric_stable_mode, true,
|
|
platform::errors::InvalidArgument(
|
|
"Attr(axis) can only be -1 "
|
|
"when not in numeric_stable_mode."));
|
|
}
|
|
|
|
bool soft_label = ctx->Attrs().Get<bool>("soft_label");
|
|
if (soft_label) {
|
|
if (ctx->IsRuntime() ||
|
|
(logits_dims[axis] > 0 && labels_dims[axis] > 0)) {
|
|
PADDLE_ENFORCE_EQ(logits_dims[axis], labels_dims[axis],
|
|
platform::errors::InvalidArgument(
|
|
"If Attr(soft_label) == true, "
|
|
"the axis dimension of "
|
|
"Input(X) and Input(Label) should be equal."));
|
|
}
|
|
} else {
|
|
if (ctx->IsRuntime() || labels_dims[axis] > 0) {
|
|
PADDLE_ENFORCE_EQ(
|
|
labels_dims[axis], 1UL,
|
|
platform::errors::InvalidArgument("If Attr(soft_label) == false, "
|
|
"the axis dimension of "
|
|
"Input(Label) should be 1."));
|
|
}
|
|
}
|
|
|
|
ctx->SetOutputDim("Softmax", logits_dims);
|
|
|
|
logits_dims[axis] = 1;
|
|
ctx->SetOutputDim("Loss", logits_dims);
|
|
|
|
ctx->ShareLoD("Logits", /*->*/ "Softmax");
|
|
ctx->ShareLoD("Logits", /*->*/ "Loss");
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "Logits"),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class SoftmaxWithCrossEntropyOpGrad : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Loss")), true,
|
|
platform::errors::InvalidArgument(
|
|
"Input(Loss@Grad) should not be null."));
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput("Softmax"), true,
|
|
platform::errors::InvalidArgument(
|
|
"Input(Softmax) should be not null."));
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasInput("Label"), true,
|
|
platform::errors::InvalidArgument("Input(Label) should be not null."));
|
|
PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("Logits")), true,
|
|
platform::errors::InvalidArgument(
|
|
"Output(Logits@Grad) should be not null."));
|
|
|
|
auto axis = ctx->Attrs().Get<int>("axis");
|
|
auto softmax_dims = ctx->GetInputDim("Softmax");
|
|
auto labels_dims = ctx->GetInputDim("Label");
|
|
auto softmax_rank = softmax_dims.size();
|
|
PADDLE_ENFORCE_GE(axis, -softmax_rank,
|
|
platform::errors::InvalidArgument(
|
|
"Attr(axis) value should be in range [-R, R-1], "
|
|
"R is the rank of Input(Logits)."));
|
|
PADDLE_ENFORCE_LT(axis, softmax_rank,
|
|
platform::errors::InvalidArgument(
|
|
"Attr(axis) value should be in range [-R, R-1], "
|
|
"R is the rank of Input(Logits)."));
|
|
|
|
axis = CanonicalAxis(axis, softmax_rank);
|
|
for (int i = 0; i < softmax_rank; i++) {
|
|
if (i != axis) {
|
|
if (ctx->IsRuntime() || (softmax_dims[i] > 0 && labels_dims[i] > 0)) {
|
|
PADDLE_ENFORCE_EQ(
|
|
softmax_dims[i], labels_dims[i],
|
|
platform::errors::InvalidArgument(
|
|
"Input(Logits) and Input(Label) should in same shape in "
|
|
"dimensions except axis."));
|
|
}
|
|
}
|
|
}
|
|
|
|
bool soft_label = ctx->Attrs().Get<bool>("soft_label");
|
|
if (soft_label) {
|
|
if (ctx->IsRuntime() ||
|
|
(softmax_dims[axis] > 0 && labels_dims[axis] > 0)) {
|
|
PADDLE_ENFORCE_EQ(softmax_dims[axis], labels_dims[axis],
|
|
platform::errors::InvalidArgument(
|
|
"If Attr(soft_label) == true, "
|
|
"the axis dimension of "
|
|
"Input(X) and Input(Label) should be equal."));
|
|
}
|
|
} else {
|
|
if (ctx->IsRuntime() || labels_dims[axis] > 0) {
|
|
PADDLE_ENFORCE_EQ(
|
|
labels_dims[axis], 1UL,
|
|
platform::errors::InvalidArgument("If Attr(soft_label) == false, "
|
|
"the axis dimension of "
|
|
"Input(Label) should be 1."));
|
|
}
|
|
}
|
|
|
|
ctx->SetOutputDim(framework::GradVarName("Logits"),
|
|
ctx->GetInputDim("Softmax"));
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
|
|
ctx, framework::GradVarName("Loss")),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class SoftmaxGradMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> grad_op) const override {
|
|
grad_op->SetType("softmax_with_cross_entropy_grad");
|
|
grad_op->SetInput("Label", this->Input("Label"));
|
|
grad_op->SetInput("Softmax", this->Output("Softmax"));
|
|
grad_op->SetInput(framework::GradVarName("Loss"), this->OutputGrad("Loss"));
|
|
grad_op->SetOutput(framework::GradVarName("Logits"),
|
|
this->InputGrad("Logits"));
|
|
grad_op->SetAttrMap(this->Attrs());
|
|
}
|
|
};
|
|
|
|
DECLARE_INPLACE_OP_INFERER(SoftmaxWithCrossEntropyInplaceInferer,
|
|
{"Logits", "Softmax"});
|
|
|
|
DECLARE_INPLACE_OP_INFERER(SoftmaxWithCrossEntropyGradInplaceInferer,
|
|
{"Softmax", framework::GradVarName("Logits")});
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OPERATOR(softmax_with_cross_entropy, ops::SoftmaxWithCrossEntropyOp,
|
|
ops::SoftmaxWithCrossEntropyOpMaker,
|
|
ops::SoftmaxGradMaker<paddle::framework::OpDesc>,
|
|
ops::SoftmaxGradMaker<paddle::imperative::OpBase>,
|
|
ops::SoftmaxWithCrossEntropyInplaceInferer);
|
|
REGISTER_OPERATOR(softmax_with_cross_entropy_grad,
|
|
ops::SoftmaxWithCrossEntropyOpGrad,
|
|
ops::SoftmaxWithCrossEntropyGradInplaceInferer);
|
|
REGISTER_OP_CPU_KERNEL(softmax_with_cross_entropy,
|
|
ops::SoftmaxWithCrossEntropyKernel<float>,
|
|
ops::SoftmaxWithCrossEntropyKernel<double>);
|
|
REGISTER_OP_CPU_KERNEL(softmax_with_cross_entropy_grad,
|
|
ops::SoftmaxWithCrossEntropyGradKernel<float>,
|
|
ops::SoftmaxWithCrossEntropyGradKernel<double>);
|