You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
253 lines
9.9 KiB
253 lines
9.9 KiB
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/spectral_norm_op.h"
|
|
|
|
#include <memory>
|
|
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using framework::Tensor;
|
|
|
|
class SpectralNormOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("Weight"), "Input", "Weight", "SpectralNorm");
|
|
OP_INOUT_CHECK(ctx->HasInput("U"), "Input", "U", "SpectralNorm");
|
|
OP_INOUT_CHECK(ctx->HasInput("V"), "Input", "V", "SpectralNorm");
|
|
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "SpectralNorm");
|
|
|
|
auto dim_weight = ctx->GetInputDim("Weight");
|
|
auto rank_weight = dim_weight.size();
|
|
PADDLE_ENFORCE_GE(rank_weight, 2,
|
|
platform::errors::InvalidArgument(
|
|
"The rank of Input(Weights) should be greater equal "
|
|
"than 2, but received Weight rank(%d)",
|
|
rank_weight));
|
|
PADDLE_ENFORCE_LE(rank_weight, 5,
|
|
platform::errors::InvalidArgument(
|
|
"The rank of Input(Weights) should be less equal "
|
|
"than 5, but received Weight rank(%d)",
|
|
rank_weight));
|
|
|
|
int dim = ctx->Attrs().Get<int>("dim");
|
|
int power_iters = ctx->Attrs().Get<int>("power_iters");
|
|
auto dim_valid = dim == 0 || dim == 1;
|
|
PADDLE_ENFORCE_EQ(
|
|
dim_valid, true,
|
|
platform::errors::InvalidArgument(
|
|
"Attr(dim) can only be 0 or 1, but received %d", dim));
|
|
PADDLE_ENFORCE_GE(
|
|
power_iters, 0,
|
|
platform::errors::InvalidArgument(
|
|
"Attr(power_iters) should be greater equal then 0, but received %d",
|
|
power_iters));
|
|
|
|
int h = dim_weight[dim];
|
|
int w = 1;
|
|
for (int i = 0; i < rank_weight; i++) {
|
|
if (i != dim) {
|
|
w *= dim_weight[i];
|
|
}
|
|
}
|
|
auto dim_u = ctx->GetInputDim("U");
|
|
auto dim_v = ctx->GetInputDim("V");
|
|
|
|
if (ctx->IsRuntime() || (dim_u[0] > 0 && h > 0)) {
|
|
PADDLE_ENFORCE_EQ(dim_u[0], h,
|
|
platform::errors::InvalidArgument(
|
|
"Input(U) dimension[0] should be equal to "
|
|
"Input(Weight) dimension[Attr(dim)], but received "
|
|
"U dimension[0](%d) != Weight dimension[%d](%d)",
|
|
dim_u[0], dim, h));
|
|
}
|
|
|
|
if (ctx->IsRuntime() || (dim_v[0] > 0 && w > 0)) {
|
|
PADDLE_ENFORCE_EQ(
|
|
dim_v[0], w,
|
|
platform::errors::InvalidArgument(
|
|
"Input(V) dimension[0] should be equal to the product of "
|
|
"Input(Weight) dimension except dimension[Attr(dim)], but "
|
|
"received V dimension[0](%d) != product of Input(Weight) "
|
|
"dimension(%d)",
|
|
dim_v[0], w));
|
|
}
|
|
|
|
ctx->SetOutputDim("Out", dim_weight);
|
|
ctx->ShareLoD("Weight", /*->*/ "Out");
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "Weight"), ctx.GetPlace());
|
|
}
|
|
};
|
|
|
|
class SpectralNormOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("Weight",
|
|
"The input weight tensor of spectral_norm operator, "
|
|
"This can be a 2-D, 3-D, 4-D, 5-D tensor which is the "
|
|
"weights of fc, conv1d, conv2d, conv3d layer. "
|
|
"The data type is float32 or float64.");
|
|
AddInput("U",
|
|
"The weight_u tensor of spectral_norm operator, "
|
|
"This can be a 1-D tensor in shape [H, 1],"
|
|
"H is the 1st dimensions of Weight after reshape"
|
|
"corresponding by Attr(dim). As for Attr(dim) = 1"
|
|
"in conv2d layer with weight shape [M, C, K1, K2]"
|
|
"Weight will be reshape to [C, M*K1*K2], U will"
|
|
"be in shape [C, 1].");
|
|
AddInput("V",
|
|
"The weight_v tensor of spectral_norm operator, "
|
|
"This can be a 1-D tensor in shape [W, 1], "
|
|
"W is the 2nd dimensions of Weight after reshape "
|
|
"corresponding by Attr(dim). As for Attr(dim) = 1 "
|
|
"in conv2d layer with weight shape [M, C, K1, K2] "
|
|
"Weight will be reshape to [C, M*K1*K2], V will "
|
|
"be in shape [M*K1*K2, 1].");
|
|
AddOutput("Out",
|
|
"The output weight tensor of spectral_norm operator, "
|
|
"This tensor is in same shape with Input(Weight).");
|
|
|
|
AddAttr<int>("dim",
|
|
"The index of dimension which should be permuted "
|
|
"to the first before reshaping Input(Weight) to "
|
|
"matrix, it should be set as 0 if Input(Weight) is "
|
|
"the weight of fc layer, and should be set as 1 if "
|
|
"Input(Weight) is the weight of conv layer, "
|
|
"default 0.")
|
|
.SetDefault(0);
|
|
AddAttr<int>("power_iters",
|
|
"number of power iterations to calculate "
|
|
"spectral norm, default 1.")
|
|
.SetDefault(1);
|
|
AddAttr<float>("eps",
|
|
"epsilon for numerical stability in "
|
|
"calculating norms, it will be added to "
|
|
"the denominator to aviod divide zero. "
|
|
"Default 1e-12.")
|
|
.SetDefault(1e-12);
|
|
|
|
AddComment(R"DOC(
|
|
This layer calculates the spectral normalization value of weight of
|
|
fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
|
|
tensor.
|
|
|
|
Spectral normalization stabilizes the training of critic in GANs
|
|
(Generative Adversarial Networks). This layer rescaling weight tensor
|
|
with spectral normalize value.
|
|
|
|
For spectral normalization calculations, we rescaling weight
|
|
tensor with :math:`\sigma`, while :math:`\sigma{\mathbf{W}}` is
|
|
|
|
$$\sigma(\mathbf{W}) = \max_{\mathbf{h}: \mathbf{h} \ne 0} \\frac{\|\mathbf{W} \mathbf{h}\|_2}{\|\mathbf{h}\|_2}$$
|
|
|
|
We calculate :math:`\sigma{\mathbf{W}}` through power iterations as
|
|
|
|
$$
|
|
\mathbf{v} = \mathbf{W}^{T} \mathbf{u}
|
|
$$
|
|
$$
|
|
\mathbf{v} = \\frac{\mathbf{v}}{\|\mathbf{v}\|_2}
|
|
$$
|
|
$$
|
|
\mathbf{u} = \mathbf{W}^{T} \mathbf{v}
|
|
$$
|
|
$$
|
|
\mathbf{u} = \\frac{\mathbf{u}}{\|\mathbf{u}\|_2}
|
|
$$
|
|
|
|
And :math:`\sigma` should be
|
|
|
|
$$\sigma{\mathbf{W}} = \mathbf{u}^{T} \mathbf{W} \mathbf{v}$$
|
|
|
|
For details of spectral normalization, please refer to paper:
|
|
`Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class SpectralNormGradOpMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op) const override {
|
|
op->SetType("spectral_norm_grad");
|
|
|
|
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
|
|
op->SetInput("Weight", this->Input("Weight"));
|
|
op->SetInput("U", this->Input("U"));
|
|
op->SetInput("V", this->Input("V"));
|
|
|
|
op->SetOutput(framework::GradVarName("Weight"), this->InputGrad("Weight"));
|
|
|
|
op->SetAttrMap(this->Attrs());
|
|
}
|
|
};
|
|
|
|
class SpectralNormOpGrad : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("Weight"), "Input", "Weight",
|
|
"SpectralNormGrad");
|
|
OP_INOUT_CHECK(ctx->HasInput("U"), "Input", "U", "SpectralNormGrad");
|
|
OP_INOUT_CHECK(ctx->HasInput("V"), "Input", "V", "SpectralNormGrad");
|
|
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
|
|
"Out@GRAD", "SpectralNormGrad");
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasInput(framework::GradVarName("Out")), true,
|
|
platform::errors::NotFound("Input(Out@GRAD) should not be null"));
|
|
auto dim_x = ctx->GetInputDim("Weight");
|
|
if (ctx->HasOutput(framework::GradVarName("Weight"))) {
|
|
ctx->SetOutputDim(framework::GradVarName("Weight"), dim_x);
|
|
}
|
|
}
|
|
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "Weight"), ctx.GetPlace());
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(spectral_norm, ops::SpectralNormOp, ops::SpectralNormOpMaker,
|
|
ops::SpectralNormGradOpMaker<paddle::framework::OpDesc>,
|
|
ops::SpectralNormGradOpMaker<paddle::imperative::OpBase>);
|
|
REGISTER_OPERATOR(spectral_norm_grad, ops::SpectralNormOpGrad);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
spectral_norm,
|
|
ops::SpectralNormKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::SpectralNormKernel<paddle::platform::CPUDeviceContext, double>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
spectral_norm_grad,
|
|
ops::SpectralNormGradKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::SpectralNormGradKernel<paddle::platform::CPUDeviceContext, double>);
|