You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
329 lines
13 KiB
329 lines
13 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/transpose_op.h"
|
|
#include <memory>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
#include "paddle/fluid/platform/mkldnn_helper.h"
|
|
#endif
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using framework::Tensor;
|
|
|
|
class TransposeOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Transpose");
|
|
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Transpose");
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
std::vector<int> axis = ctx->Attrs().Get<std::vector<int>>("axis");
|
|
size_t x_rank = x_dims.size();
|
|
size_t axis_size = axis.size();
|
|
|
|
PADDLE_ENFORCE_EQ(x_rank, axis_size,
|
|
platform::errors::InvalidArgument(
|
|
"The input tensor's dimension "
|
|
"should be equal to the axis's size. "
|
|
"But received input tensor's dimension is %d, "
|
|
"axis's size is %d",
|
|
x_rank, axis_size));
|
|
|
|
std::vector<int> count(axis_size, 0);
|
|
for (size_t i = 0; i < axis_size; i++) {
|
|
PADDLE_ENFORCE_EQ(
|
|
axis[i] < static_cast<int>(axis_size) && ++count[axis[i]] == 1, true,
|
|
platform::errors::InvalidArgument(
|
|
"Each element of Attribute axis should "
|
|
"be a unique value range from 0 to (dims - 1), "
|
|
"where the dims is the axis's size, "
|
|
"unique value means this axis value can appear only once. "
|
|
"But received axis[%d] is %d, axis_size is %d, "
|
|
"count[axis[%d]] is %d",
|
|
i, axis[i], axis_size, i, count[axis[i]]));
|
|
}
|
|
|
|
framework::DDim out_dims(x_dims);
|
|
for (size_t i = 0; i < axis_size; i++) {
|
|
out_dims[i] = x_dims[axis[i]];
|
|
}
|
|
ctx->SetOutputDim("Out", out_dims);
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override {
|
|
framework::LibraryType library_{framework::LibraryType::kPlain};
|
|
std::string data_format = ctx.Attr<std::string>("data_format");
|
|
framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
if (library_ == framework::LibraryType::kPlain &&
|
|
platform::CanMKLDNNBeUsed(ctx)) {
|
|
library_ = framework::LibraryType::kMKLDNN;
|
|
layout_ = framework::DataLayout::kMKLDNN;
|
|
}
|
|
#endif
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
|
|
layout_, library_);
|
|
}
|
|
};
|
|
|
|
class TransposeOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput(
|
|
"X",
|
|
"(Tensor) The input tensor, tensors with rank up to 6 are supported.");
|
|
AddOutput("Out", "(Tensor)The output tensor.");
|
|
AddAttr<std::vector<int>>(
|
|
"axis",
|
|
"(vector<int>) A list of values, and the size of the list should be "
|
|
"the same with the input tensor rank. This operator permutes the input "
|
|
"tensor's axes according to the values given.");
|
|
AddAttr<bool>("use_mkldnn",
|
|
"(bool, default false) Only used in mkldnn kernel")
|
|
.SetDefault(false);
|
|
AddAttr<std::string>(
|
|
"data_format",
|
|
"(string, default NCHW) Only used in "
|
|
"An optional string from: \"NHWC\", \"NCHW\". "
|
|
"Defaults to \"NHWC\". Specify the data format of the output data, "
|
|
"the input will be transformed automatically. ")
|
|
.SetDefault("AnyLayout");
|
|
/* int8 parameters */
|
|
AddAttr<bool>("use_quantizer",
|
|
"(bool, default false) "
|
|
"Set to true for operators that should be quantized and use "
|
|
"int8 kernel. "
|
|
"Only used on CPU.")
|
|
.SetDefault(false);
|
|
AddComment(R"DOC(
|
|
Transpose Operator.
|
|
|
|
The input tensor will be permuted according to the axes given.
|
|
The behavior of this operator is similar to how `numpy.transpose` works.
|
|
|
|
- suppose the input `X` is a 2-D tensor:
|
|
$$
|
|
X = \begin{pmatrix}
|
|
0 &1 &2 \\
|
|
3 &4 &5
|
|
\end{pmatrix}$$
|
|
|
|
the given `axes` is: $[1, 0]$, and $Y$ = transpose($X$, axis)
|
|
|
|
then the output $Y$ is:
|
|
|
|
$$
|
|
Y = \begin{pmatrix}
|
|
0 &3 \\
|
|
1 &4 \\
|
|
2 &5
|
|
\end{pmatrix}$$
|
|
|
|
- Given a input tensor with shape $(N, C, H, W)$ and the `axes` is
|
|
$[0, 2, 3, 1]$, then shape of the output tensor will be: $(N, H, W, C)$.
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class TransposeOpGrad : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "TransposeOpGrad");
|
|
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
|
|
framework::GradVarName("Out"), "TransposeOpGrad");
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
|
|
if (ctx->HasOutput(framework::GradVarName("X"))) {
|
|
ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
|
|
}
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override {
|
|
framework::LibraryType library_{framework::LibraryType::kPlain};
|
|
std::string data_format = ctx.Attr<std::string>("data_format");
|
|
framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
if (library_ == framework::LibraryType::kPlain &&
|
|
platform::CanMKLDNNBeUsed(ctx)) {
|
|
library_ = framework::LibraryType::kMKLDNN;
|
|
layout_ = framework::DataLayout::kMKLDNN;
|
|
}
|
|
#endif
|
|
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
|
|
ctx, framework::GradVarName("Out")),
|
|
ctx.GetPlace(), layout_, library_);
|
|
}
|
|
};
|
|
|
|
// FIXME(zcd): transpose2 adds an intermediate output(XShape) based on
|
|
// transpose, the XShape is used to carry the shape and lod of X which
|
|
// will be used in transpose_grad, in this way, the framework can reuse
|
|
// the memory of X immediately the transpose2_op is finished.
|
|
// Considering compatibility issues, we could not fix transpose2_op
|
|
class Transpose2Op : public TransposeOp {
|
|
public:
|
|
Transpose2Op(const std::string &type,
|
|
const framework::VariableNameMap &inputs,
|
|
const framework::VariableNameMap &outputs,
|
|
const framework::AttributeMap &attrs)
|
|
: TransposeOp(type, inputs, outputs, attrs) {}
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
TransposeOp::InferShape(ctx);
|
|
OP_INOUT_CHECK(ctx->HasOutput("XShape"), "Output", "XShape", "Transpose2");
|
|
const auto &in_dims = ctx->GetInputDim("X");
|
|
std::vector<int64_t> x_shape_dim(in_dims.size() + 1);
|
|
x_shape_dim[0] = 0;
|
|
for (int i = 0; i < in_dims.size(); ++i) {
|
|
x_shape_dim[i + 1] = in_dims[i];
|
|
}
|
|
ctx->SetOutputDim("XShape", framework::make_ddim(x_shape_dim));
|
|
ctx->ShareLoD("X", /*->*/ "XShape");
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override {
|
|
framework::LibraryType library_{framework::LibraryType::kPlain};
|
|
std::string data_format = ctx.Attr<std::string>("data_format");
|
|
int customized_type_value =
|
|
framework::OpKernelType::kDefaultCustomizedTypeValue;
|
|
framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
if (library_ == framework::LibraryType::kPlain &&
|
|
platform::CanMKLDNNBeUsed(ctx)) {
|
|
library_ = framework::LibraryType::kMKLDNN;
|
|
layout_ = framework::DataLayout::kMKLDNN;
|
|
using framework::proto::VarType;
|
|
auto input_data_type = ctx.Input<Tensor>("X")->type();
|
|
customized_type_value = (input_data_type == VarType::INT8 ||
|
|
input_data_type == VarType::UINT8)
|
|
? kTransposeMKLDNNINT8
|
|
: kTransposeMKLDNNFP32;
|
|
}
|
|
#endif
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
|
|
layout_, library_, customized_type_value);
|
|
}
|
|
};
|
|
|
|
class Transpose2OpMaker : public TransposeOpMaker {
|
|
public:
|
|
void Make() override {
|
|
TransposeOpMaker::Make();
|
|
AddOutput("XShape", "(Tensor)The output tensor.").AsIntermediate();
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class Transpose2GradMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
void Apply(GradOpPtr<T> grad_op) const override {
|
|
grad_op->SetType("transpose2_grad");
|
|
grad_op->SetInput("XShape", this->Output("XShape"));
|
|
grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
|
|
grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
|
|
grad_op->SetAttrMap(this->Attrs());
|
|
}
|
|
};
|
|
|
|
class Transpose2OpGrad : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("XShape"), "Input", "XShape",
|
|
"Transpose2OpGrad");
|
|
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
|
|
framework::GradVarName("Out"), "Transpose2OpGrad");
|
|
if (ctx->HasOutput(framework::GradVarName("X"))) {
|
|
auto xshape_dim = ctx->GetInputDim("XShape");
|
|
auto x_shape_dim =
|
|
framework::slice_ddim(xshape_dim, 1, xshape_dim.size());
|
|
ctx->SetOutputDim(framework::GradVarName("X"), x_shape_dim);
|
|
ctx->ShareLoD("XShape", framework::GradVarName("X"));
|
|
}
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override {
|
|
framework::LibraryType library_{framework::LibraryType::kPlain};
|
|
std::string data_format = ctx.Attr<std::string>("data_format");
|
|
framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
if (library_ == framework::LibraryType::kPlain &&
|
|
platform::CanMKLDNNBeUsed(ctx)) {
|
|
library_ = framework::LibraryType::kMKLDNN;
|
|
layout_ = framework::DataLayout::kMKLDNN;
|
|
}
|
|
#endif
|
|
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
|
|
ctx, framework::GradVarName("Out")),
|
|
ctx.GetPlace(), layout_, library_);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(
|
|
transpose, ops::TransposeOp, ops::TransposeOpMaker,
|
|
paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
|
|
paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
|
|
REGISTER_OPERATOR(transpose_grad, ops::TransposeOpGrad);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
transpose, ops::TransposeKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::TransposeKernel<paddle::platform::CPUDeviceContext, double>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
transpose_grad,
|
|
ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, double>);
|
|
|
|
REGISTER_OPERATOR(transpose2, ops::Transpose2Op, ops::Transpose2OpMaker,
|
|
ops::Transpose2GradMaker<paddle::framework::OpDesc>,
|
|
ops::Transpose2GradMaker<paddle::imperative::OpBase>);
|
|
REGISTER_OPERATOR(transpose2_grad, ops::Transpose2OpGrad);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
transpose2, ops::TransposeKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::TransposeKernel<paddle::platform::CPUDeviceContext, int32_t>,
|
|
ops::TransposeKernel<paddle::platform::CPUDeviceContext, int64_t>,
|
|
ops::TransposeKernel<paddle::platform::CPUDeviceContext, double>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
transpose2_grad,
|
|
ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, int32_t>,
|
|
ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
|
|
ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, double>);
|