You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
261 lines
8.4 KiB
261 lines
8.4 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <limits>
|
|
#include <random>
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
// reference: https://gist.github.com/lakshayg/d80172fe5ae3c5d2c2aedb53c250320e
|
|
template <typename T>
|
|
T Erfinv(T x) {
|
|
if (x < -1 || x > 1) {
|
|
return std::numeric_limits<T>::quiet_NaN();
|
|
} else if (x == 1.0) {
|
|
return std::numeric_limits<T>::infinity();
|
|
} else if (x == -1.0) {
|
|
return -std::numeric_limits<T>::infinity();
|
|
}
|
|
|
|
const T LN2 = 6.931471805599453094172321214581e-1;
|
|
|
|
const T A0 = 1.1975323115670912564578e0;
|
|
const T A1 = 4.7072688112383978012285e1;
|
|
const T A2 = 6.9706266534389598238465e2;
|
|
const T A3 = 4.8548868893843886794648e3;
|
|
const T A4 = 1.6235862515167575384252e4;
|
|
const T A5 = 2.3782041382114385731252e4;
|
|
const T A6 = 1.1819493347062294404278e4;
|
|
const T A7 = 8.8709406962545514830200e2;
|
|
|
|
const T B0 = 1.0000000000000000000e0;
|
|
const T B1 = 4.2313330701600911252e1;
|
|
const T B2 = 6.8718700749205790830e2;
|
|
const T B3 = 5.3941960214247511077e3;
|
|
const T B4 = 2.1213794301586595867e4;
|
|
const T B5 = 3.9307895800092710610e4;
|
|
const T B6 = 2.8729085735721942674e4;
|
|
const T B7 = 5.2264952788528545610e3;
|
|
|
|
const T C0 = 1.42343711074968357734e0;
|
|
const T C1 = 4.63033784615654529590e0;
|
|
const T C2 = 5.76949722146069140550e0;
|
|
const T C3 = 3.64784832476320460504e0;
|
|
const T C4 = 1.27045825245236838258e0;
|
|
const T C5 = 2.41780725177450611770e-1;
|
|
const T C6 = 2.27238449892691845833e-2;
|
|
const T C7 = 7.74545014278341407640e-4;
|
|
|
|
const T D0 = 1.4142135623730950488016887e0;
|
|
const T D1 = 2.9036514445419946173133295e0;
|
|
const T D2 = 2.3707661626024532365971225e0;
|
|
const T D3 = 9.7547832001787427186894837e-1;
|
|
const T D4 = 2.0945065210512749128288442e-1;
|
|
const T D5 = 2.1494160384252876777097297e-2;
|
|
const T D6 = 7.7441459065157709165577218e-4;
|
|
const T D7 = 1.4859850019840355905497876e-9;
|
|
|
|
const T E0 = 6.65790464350110377720e0;
|
|
const T E1 = 5.46378491116411436990e0;
|
|
const T E2 = 1.78482653991729133580e0;
|
|
const T E3 = 2.96560571828504891230e-1;
|
|
const T E4 = 2.65321895265761230930e-2;
|
|
const T E5 = 1.24266094738807843860e-3;
|
|
const T E6 = 2.71155556874348757815e-5;
|
|
const T E7 = 2.01033439929228813265e-7;
|
|
|
|
const T F0 = 1.414213562373095048801689e0;
|
|
const T F1 = 8.482908416595164588112026e-1;
|
|
const T F2 = 1.936480946950659106176712e-1;
|
|
const T F3 = 2.103693768272068968719679e-2;
|
|
const T F4 = 1.112800997078859844711555e-3;
|
|
const T F5 = 2.611088405080593625138020e-5;
|
|
const T F6 = 2.010321207683943062279931e-7;
|
|
const T F7 = 2.891024605872965461538222e-15;
|
|
|
|
T abs_x = abs(x);
|
|
|
|
if (abs_x <= 0.85) {
|
|
T r = 0.180625 - 0.25 * x * x;
|
|
T num =
|
|
(((((((A7 * r + A6) * r + A5) * r + A4) * r + A3) * r + A2) * r + A1) *
|
|
r +
|
|
A0);
|
|
T den =
|
|
(((((((B7 * r + B6) * r + B5) * r + B4) * r + B3) * r + B2) * r + B1) *
|
|
r +
|
|
B0);
|
|
return x * num / den;
|
|
}
|
|
|
|
T r = sqrt(LN2 - log(1.0 - abs_x));
|
|
|
|
T num, den;
|
|
if (r <= 5.0) {
|
|
r = r - 1.6;
|
|
num =
|
|
(((((((C7 * r + C6) * r + C5) * r + C4) * r + C3) * r + C2) * r + C1) *
|
|
r +
|
|
C0);
|
|
den =
|
|
(((((((D7 * r + D6) * r + D5) * r + D4) * r + D3) * r + D2) * r + D1) *
|
|
r +
|
|
D0);
|
|
} else {
|
|
r = r - 5.0;
|
|
num =
|
|
(((((((E7 * r + E6) * r + E5) * r + E4) * r + E3) * r + E2) * r + E1) *
|
|
r +
|
|
E0);
|
|
den =
|
|
(((((((F7 * r + F6) * r + F5) * r + F4) * r + F3) * r + F2) * r + F1) *
|
|
r +
|
|
F0);
|
|
}
|
|
|
|
if (x < 0) {
|
|
return -num / den;
|
|
} else {
|
|
return num / den;
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
struct TruncatedNormal {
|
|
T mean, std;
|
|
T a_normal_cdf;
|
|
T b_normal_cdf;
|
|
TruncatedNormal(T mean, T std) : mean(mean), std(std) {
|
|
auto normal_cdf = [](T x) {
|
|
return (1.0 + std::erf(x / std::sqrt(2.0))) / 2.0;
|
|
};
|
|
a_normal_cdf = normal_cdf(-2.0);
|
|
b_normal_cdf = normal_cdf(2.0);
|
|
}
|
|
|
|
T operator()(T value) const {
|
|
auto p = a_normal_cdf + (b_normal_cdf - a_normal_cdf) * value;
|
|
return std::sqrt(2.0) * Erfinv(2 * p - 1) * std + mean;
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class CPUTruncatedGaussianRandomKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
float mean = context.Attr<float>("mean");
|
|
float std = context.Attr<float>("std");
|
|
auto* tensor = context.Output<framework::Tensor>("Out");
|
|
T* data = tensor->mutable_data<T>(context.GetPlace());
|
|
|
|
unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
|
|
std::minstd_rand engine;
|
|
if (seed == 0) {
|
|
seed = std::random_device()();
|
|
}
|
|
engine.seed(seed);
|
|
std::uniform_real_distribution<T> dist(std::numeric_limits<float>::min(),
|
|
1.0);
|
|
TruncatedNormal<T> truncated_normal(mean, std);
|
|
int64_t size = tensor->numel();
|
|
for (int64_t i = 0; i < size; ++i) {
|
|
data[i] = truncated_normal(dist(engine));
|
|
}
|
|
}
|
|
};
|
|
|
|
class TruncatedGaussianRandomOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasOutput("Out"), true,
|
|
platform::errors::NotFound(
|
|
"Output(Out) of TruncatedGaussianRandomOp should not be null."));
|
|
auto shape = ctx->Attrs().Get<std::vector<int>>("shape");
|
|
std::vector<int64_t> out_dim;
|
|
out_dim.reserve(shape.size());
|
|
for (auto dim : shape) {
|
|
out_dim.push_back(static_cast<int64_t>(dim));
|
|
}
|
|
PADDLE_ENFORCE_GT(
|
|
shape.size(), 0UL,
|
|
platform::errors::InvalidArgument(
|
|
"the input shape of TruncatedGaussianRandomOp must be set, "
|
|
"But the rank of shape we received is %d",
|
|
shape.size()));
|
|
ctx->SetOutputDim("Out", framework::make_ddim(out_dim));
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
framework::LibraryType library{framework::LibraryType::kPlain};
|
|
framework::DataLayout layout{framework::DataLayout::kAnyLayout};
|
|
return framework::OpKernelType(
|
|
static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype")),
|
|
ctx.device_context(), layout, library);
|
|
}
|
|
};
|
|
|
|
class TruncatedGaussianRandomOpMaker
|
|
: public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddOutput("Out", "Output tensor of truncated gaussian random op.");
|
|
|
|
AddAttr<std::vector<int>>("shape",
|
|
"(vector<int>) "
|
|
"The dimension of random tensor.");
|
|
AddAttr<float>("mean",
|
|
"(float, default 0.0) "
|
|
"mean of random tensor.")
|
|
.SetDefault(.0f);
|
|
AddAttr<float>("std",
|
|
"(float, default 1.0) "
|
|
"std of random tensor.")
|
|
.SetDefault(1.0f);
|
|
AddAttr<int>("seed",
|
|
"(int, default 0) "
|
|
"Random seed of generator."
|
|
"0 means use system wide seed."
|
|
"Note that if seed is not 0, this operator will always "
|
|
"generate the same random numbers every time.")
|
|
.SetDefault(0);
|
|
AddAttr<int>("dtype",
|
|
"(int, default 5(FP32)) "
|
|
"Output data type.")
|
|
.SetDefault(framework::proto::VarType::FP32);
|
|
AddComment(R"DOC(
|
|
TruncatedGaussianRandom Operator.
|
|
|
|
Used to initialize tensors with truncated gaussian random generator.
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP_WITHOUT_GRADIENT(truncated_gaussian_random,
|
|
ops::TruncatedGaussianRandomOp,
|
|
ops::TruncatedGaussianRandomOpMaker);
|
|
REGISTER_OP_CPU_KERNEL(truncated_gaussian_random,
|
|
ops::CPUTruncatedGaussianRandomKernel<float>);
|