You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
95 lines
3.5 KiB
95 lines
3.5 KiB
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
#include <algorithm>
|
|
#include <utility>
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
using Tensor = framework::Tensor;
|
|
|
|
inline std::vector<int64_t> GetNewDataFromShapeTensor(
|
|
const Tensor *new_data_tensor) {
|
|
if (new_data_tensor->type() == framework::proto::VarType::INT64) {
|
|
auto *new_data = new_data_tensor->data<int64_t>();
|
|
framework::Tensor cpu_starts_tensor;
|
|
if (platform::is_gpu_place(new_data_tensor->place())) {
|
|
TensorCopySync(*new_data_tensor, platform::CPUPlace(),
|
|
&cpu_starts_tensor);
|
|
new_data = cpu_starts_tensor.data<int64_t>();
|
|
}
|
|
std::vector<int64_t> vec_new_data(new_data,
|
|
new_data + new_data_tensor->numel());
|
|
return vec_new_data;
|
|
} else if (new_data_tensor->type() == framework::proto::VarType::INT32) {
|
|
auto *new_data = new_data_tensor->data<int32_t>();
|
|
std::vector<int64_t> vec_new_data;
|
|
framework::Tensor cpu_starts_tensor;
|
|
if (platform::is_gpu_place(new_data_tensor->place())) {
|
|
TensorCopySync(*new_data_tensor, platform::CPUPlace(),
|
|
&cpu_starts_tensor);
|
|
new_data = cpu_starts_tensor.data<int32_t>();
|
|
}
|
|
for (int i = 0; i < new_data_tensor->numel(); ++i) {
|
|
vec_new_data.push_back(static_cast<int64_t>(*(new_data + i)));
|
|
}
|
|
return vec_new_data;
|
|
} else {
|
|
PADDLE_THROW("The dtype of shape tensor must be int32 or int64.");
|
|
}
|
|
}
|
|
|
|
inline std::vector<int64_t> GetNewDataFromShapeTensorList(
|
|
const std::vector<const Tensor *> &list_new_shape_tensor) {
|
|
std::vector<int64_t> vec_new_shape;
|
|
vec_new_shape.reserve(list_new_shape_tensor.size());
|
|
for (size_t i = 0; i < list_new_shape_tensor.size(); ++i) {
|
|
auto tensor = list_new_shape_tensor[i];
|
|
PADDLE_ENFORCE_EQ(
|
|
tensor->dims(), framework::make_ddim({1}),
|
|
platform::errors::InvalidArgument(
|
|
"Shape of dim tensor in uniform_random_op should be [1]"
|
|
"But received tensor's dim=%s.",
|
|
tensor->dims()));
|
|
|
|
if (tensor->type() == framework::proto::VarType::INT32) {
|
|
if (platform::is_gpu_place(tensor->place())) {
|
|
framework::Tensor temp;
|
|
TensorCopySync(*tensor, platform::CPUPlace(), &temp);
|
|
vec_new_shape.push_back(static_cast<int64_t>(*temp.data<int32_t>()));
|
|
} else {
|
|
vec_new_shape.push_back(static_cast<int64_t>(*tensor->data<int32_t>()));
|
|
}
|
|
} else if (tensor->type() == framework::proto::VarType::INT64) {
|
|
if (platform::is_gpu_place(tensor->place())) {
|
|
framework::Tensor temp;
|
|
TensorCopySync(*tensor, platform::CPUPlace(), &temp);
|
|
vec_new_shape.push_back(*temp.data<int64_t>());
|
|
} else {
|
|
vec_new_shape.push_back(*tensor->data<int64_t>());
|
|
}
|
|
} else {
|
|
PADDLE_THROW("The dtype of shape tensor must be int32 or int64.");
|
|
}
|
|
}
|
|
|
|
return vec_new_shape;
|
|
}
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|