You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/uniform_random_op.h

95 lines
3.5 KiB

// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
inline std::vector<int64_t> GetNewDataFromShapeTensor(
const Tensor *new_data_tensor) {
if (new_data_tensor->type() == framework::proto::VarType::INT64) {
auto *new_data = new_data_tensor->data<int64_t>();
framework::Tensor cpu_starts_tensor;
if (platform::is_gpu_place(new_data_tensor->place())) {
TensorCopySync(*new_data_tensor, platform::CPUPlace(),
&cpu_starts_tensor);
new_data = cpu_starts_tensor.data<int64_t>();
}
std::vector<int64_t> vec_new_data(new_data,
new_data + new_data_tensor->numel());
return vec_new_data;
} else if (new_data_tensor->type() == framework::proto::VarType::INT32) {
auto *new_data = new_data_tensor->data<int32_t>();
std::vector<int64_t> vec_new_data;
framework::Tensor cpu_starts_tensor;
if (platform::is_gpu_place(new_data_tensor->place())) {
TensorCopySync(*new_data_tensor, platform::CPUPlace(),
&cpu_starts_tensor);
new_data = cpu_starts_tensor.data<int32_t>();
}
for (int i = 0; i < new_data_tensor->numel(); ++i) {
vec_new_data.push_back(static_cast<int64_t>(*(new_data + i)));
}
return vec_new_data;
} else {
PADDLE_THROW("The dtype of shape tensor must be int32 or int64.");
}
}
inline std::vector<int64_t> GetNewDataFromShapeTensorList(
const std::vector<const Tensor *> &list_new_shape_tensor) {
std::vector<int64_t> vec_new_shape;
vec_new_shape.reserve(list_new_shape_tensor.size());
for (size_t i = 0; i < list_new_shape_tensor.size(); ++i) {
auto tensor = list_new_shape_tensor[i];
PADDLE_ENFORCE_EQ(
tensor->dims(), framework::make_ddim({1}),
platform::errors::InvalidArgument(
"Shape of dim tensor in uniform_random_op should be [1]"
"But received tensor's dim=%s.",
tensor->dims()));
if (tensor->type() == framework::proto::VarType::INT32) {
if (platform::is_gpu_place(tensor->place())) {
framework::Tensor temp;
TensorCopySync(*tensor, platform::CPUPlace(), &temp);
vec_new_shape.push_back(static_cast<int64_t>(*temp.data<int32_t>()));
} else {
vec_new_shape.push_back(static_cast<int64_t>(*tensor->data<int32_t>()));
}
} else if (tensor->type() == framework::proto::VarType::INT64) {
if (platform::is_gpu_place(tensor->place())) {
framework::Tensor temp;
TensorCopySync(*tensor, platform::CPUPlace(), &temp);
vec_new_shape.push_back(*temp.data<int64_t>());
} else {
vec_new_shape.push_back(*tensor->data<int64_t>());
}
} else {
PADDLE_THROW("The dtype of shape tensor must be int32 or int64.");
}
}
return vec_new_shape;
}
} // namespace operators
} // namespace paddle