You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
171 lines
7.0 KiB
171 lines
7.0 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
Indicesou may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/unpool_op.h"
|
|
#include <memory>
|
|
#include <string>
|
|
#include <vector>
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class Unpool2dOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput(
|
|
"X",
|
|
"(Tensor) The input tensor of unpool operator. "
|
|
"The format of input tensor is NCHW. Where N is batch size, C is the "
|
|
"number of channels, H and W is the height and width of feature.");
|
|
AddInput(
|
|
"Indices",
|
|
"(Tensor) The input tensor of the indices given out by MaxPool2d. "
|
|
"The format of input tensor is NCHW. Where N is batch size, C is the "
|
|
"number of channels, H and W is the height and width of feature.");
|
|
AddOutput("Out",
|
|
"(Tensor) The output tensor of unpool operator."
|
|
"The format of output tensor is also NCHW."
|
|
"Where N is batch size, C is "
|
|
"the number of channels, H and W is the height and "
|
|
"width of feature.");
|
|
AddAttr<std::vector<int>>(
|
|
"ksize",
|
|
"(vector), the unpooling window size(height, width) "
|
|
"of unpooling operator.");
|
|
AddAttr<std::vector<int>>("strides",
|
|
"(vector, default:{1, 1}), "
|
|
"strides (height, width) of unpooling operator.")
|
|
.SetDefault({1, 1});
|
|
AddAttr<std::vector<int>>("paddings",
|
|
"(vector default:{0,0}), "
|
|
"paddings (height, width) of unpooling operator.")
|
|
.SetDefault({0, 0});
|
|
AddAttr<std::string>(
|
|
"unpooling_type",
|
|
"(string), unpooling type, can be \"max\" for max-unpooling ")
|
|
.InEnum({"max"});
|
|
AddComment(R"DOC(
|
|
Input shape is: $(N, C_{in}, H_{in}, W_{in})$, Output shape is:
|
|
$(N, C_{out}, H_{out}, W_{out})$, where
|
|
$$
|
|
H_{out} = (H_{in}-1) * strides[0] - 2 * paddings[0] + ksize[0] \\
|
|
W_{out} = (W_{in}-1) * strides[1] - 2 * paddings[1] + ksize[1]
|
|
$$
|
|
Paper: http://www.matthewzeiler.com/wp-content/uploads/2017/07/iccv2011.pdf
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
int UnpoolOutputSize(int input_size, int ksize, int padding, int stride) {
|
|
int output_size = (input_size - 1) * stride - 2 * padding + ksize;
|
|
return output_size;
|
|
}
|
|
|
|
class UnpoolOp : public framework::OperatorWithKernel {
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "X"),
|
|
ctx.device_context());
|
|
}
|
|
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Unpool");
|
|
OP_INOUT_CHECK(ctx->HasInput("Indices"), "Input", "Indices", "Unpool");
|
|
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Unpool");
|
|
auto in_x_dims = ctx->GetInputDim("X");
|
|
auto in_y_dims = ctx->GetInputDim("Indices");
|
|
std::string unpooling_type =
|
|
ctx->Attrs().Get<std::string>("unpooling_type");
|
|
std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
|
|
std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
|
|
std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
|
|
PADDLE_ENFORCE_EQ(in_x_dims.size() == 4, true,
|
|
platform::errors::InvalidArgument(
|
|
"Unpool Intput(X) must be of 4-dimensional, but "
|
|
"received Input(X)'s dimensions is %d.",
|
|
in_x_dims.size()));
|
|
PADDLE_ENFORCE_EQ(in_x_dims, in_y_dims,
|
|
platform::errors::InvalidArgument(
|
|
"The dimensions of Input(X) must equal to be"
|
|
"the dimensions of Input(Indices), but received"
|
|
"dimensions of Input(X) is [%d], received dimensions"
|
|
"of Input(Indices) is [%d]",
|
|
in_x_dims, in_y_dims));
|
|
|
|
std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
|
|
for (size_t i = 0; i < ksize.size(); ++i) {
|
|
if (!ctx->IsRuntime() && in_x_dims[i + 2] <= 0) {
|
|
output_shape.push_back(-1);
|
|
} else {
|
|
output_shape.push_back(UnpoolOutputSize(in_x_dims[i + 2], ksize[i],
|
|
paddings[i], strides[i]));
|
|
}
|
|
}
|
|
ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class UnpoolOpGradMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
void Apply(GradOpPtr<T> op) const override {
|
|
op->SetType(this->ForwardOpType() + "_grad");
|
|
op->SetInput("X", this->Input("X"));
|
|
op->SetInput("Indices", this->Input("Indices"));
|
|
op->SetInput("Out", this->Output("Out"));
|
|
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
|
|
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
|
|
op->SetAttrMap(this->Attrs());
|
|
}
|
|
};
|
|
|
|
class UnpoolOpGrad : public framework::OperatorWithKernel {
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "X"),
|
|
ctx.device_context());
|
|
}
|
|
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "UnpoolGrad");
|
|
OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
|
|
framework::GradVarName("X"), "UnpoolGrad");
|
|
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
|
|
}
|
|
};
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(unpool, ops::UnpoolOp, ops::Unpool2dOpMaker,
|
|
ops::UnpoolOpGradMaker<paddle::framework::OpDesc>,
|
|
ops::UnpoolOpGradMaker<paddle::imperative::OpBase>);
|
|
|
|
REGISTER_OPERATOR(unpool_grad, ops::UnpoolOpGrad);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
unpool, ops::UnpoolKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::UnpoolKernel<paddle::platform::CPUDeviceContext, double>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
unpool_grad,
|
|
ops::UnpoolGradKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::UnpoolGradKernel<paddle::platform::CPUDeviceContext, double>);
|