You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
174 lines
7.0 KiB
174 lines
7.0 KiB
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle/fluid/imperative/prepared_operator.h"
|
|
|
|
#include <sstream>
|
|
|
|
#include "paddle/fluid/imperative/execution_context.h"
|
|
#include "paddle/fluid/imperative/infer_shape_context.h"
|
|
#include "paddle/fluid/imperative/infer_var_type_context.h"
|
|
|
|
namespace paddle {
|
|
namespace imperative {
|
|
|
|
const framework::Tensor* GetTensorFromVar(const framework::Variable& var) {
|
|
if (var.IsType<framework::LoDTensor>()) {
|
|
return &(var.Get<framework::LoDTensor>());
|
|
} else if (var.IsType<framework::SelectedRows>()) {
|
|
return &(var.Get<framework::SelectedRows>().value());
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
template <typename VarType>
|
|
static void PrepareData(const platform::Place& place,
|
|
const NameVarMap<VarType>& ins,
|
|
const framework::OperatorWithKernel& op,
|
|
const framework::OpKernelType& expected_kernel_key) {
|
|
for (const auto& name_pair : ins) {
|
|
for (const auto& var_base : name_pair.second) {
|
|
const auto* tensor = GetTensorFromVar(var_base->Var());
|
|
if (tensor && tensor->IsInitialized()) {
|
|
auto kernel_type_for_var = op.GetKernelTypeForVar(
|
|
name_pair.first, *tensor, expected_kernel_key);
|
|
if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
|
|
continue;
|
|
} else {
|
|
VLOG(3) << "Transform Variable " << var_base->Name() << " from "
|
|
<< kernel_type_for_var << " to " << expected_kernel_key;
|
|
framework::Tensor out;
|
|
TransformData(expected_kernel_key, kernel_type_for_var, *tensor,
|
|
&out);
|
|
SetTensorToVariable(var_base->Var(), out, var_base->MutableVar());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
PreparedOp::PreparedOp(const framework::OperatorBase& op,
|
|
const framework::RuntimeContext& ctx,
|
|
const framework::OperatorWithKernel::OpKernelFunc& func,
|
|
platform::DeviceContext* dev_ctx)
|
|
: op_(op), ctx_(ctx), func_(func), dev_ctx_(dev_ctx) {}
|
|
|
|
template <typename VarType>
|
|
PreparedOp PrepareOpImpl(const NameVarMap<VarType>& ins,
|
|
const NameVarMap<VarType>& outs,
|
|
const framework::OperatorWithKernel& op,
|
|
platform::Place place,
|
|
const framework::AttributeMap& attrs) {
|
|
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
|
|
auto* dev_ctx = pool.Get(place);
|
|
|
|
// check if op[type] has kernel registered.
|
|
auto& all_op_kernels = op.AllOpKernels();
|
|
auto kernels_iter = all_op_kernels.find(op.Type());
|
|
|
|
PADDLE_ENFORCE_NE(
|
|
kernels_iter, all_op_kernels.end(),
|
|
platform::errors::NotFound(
|
|
"There are no kernels which are registered in the %s operator.",
|
|
op.Type()));
|
|
|
|
auto& kernels = kernels_iter->second;
|
|
|
|
framework::RuntimeContext ctx({}, {});
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
// MKLDNN variant of code reads attributes in some of GetKernelTypeForVar and
|
|
// GetKernelType functions, so we need to copy the attributes there.
|
|
// Const qualifier of Attrs had to be discarded to overwrite it.
|
|
auto& mutable_op_attrs = const_cast<framework::AttributeMap&>(op.Attrs());
|
|
mutable_op_attrs = attrs;
|
|
#endif
|
|
auto expected_kernel_key =
|
|
op.GetExpectedKernelType(DygraphExecutionContext<VarType>(
|
|
op, framework::Scope(), *dev_ctx, ctx, ins, outs, attrs));
|
|
VLOG(3) << "expected_kernel_key:" << expected_kernel_key;
|
|
|
|
auto kernel_iter = kernels.find(expected_kernel_key);
|
|
#ifdef PADDLE_WITH_XPU
|
|
if (kernel_iter == kernels.end() &&
|
|
is_xpu_place(expected_kernel_key.place_)) {
|
|
expected_kernel_key.place_ = platform::CPUPlace();
|
|
kernel_iter = kernels.find(expected_kernel_key);
|
|
}
|
|
#endif
|
|
// TODO(jiabin): Add operator.cc's line 1000 part back when we need that case
|
|
PADDLE_ENFORCE_NE(kernel_iter, kernels.end(),
|
|
platform::errors::NotFound(
|
|
"Operator %s does not have kernel for %s.", op.Type(),
|
|
KernelTypeToString(expected_kernel_key)));
|
|
|
|
if (!(expected_kernel_key.place_ == place)) {
|
|
dev_ctx = pool.Get(expected_kernel_key.place_);
|
|
place = dev_ctx->GetPlace();
|
|
}
|
|
|
|
PrepareData<VarType>(place, ins, op, expected_kernel_key);
|
|
return PreparedOp(op, ctx, kernel_iter->second, dev_ctx);
|
|
}
|
|
|
|
PreparedOp PreparedOp::Prepare(const NameVarMap<VarBase>& ins,
|
|
const NameVarMap<VarBase>& outs,
|
|
const framework::OperatorWithKernel& op,
|
|
const platform::Place& place,
|
|
const framework::AttributeMap& attrs) {
|
|
return PrepareOpImpl<VarBase>(ins, outs, op, place, attrs);
|
|
}
|
|
|
|
PreparedOp PreparedOp::Prepare(const NameVarMap<VariableWrapper>& ins,
|
|
const NameVarMap<VariableWrapper>& outs,
|
|
const framework::OperatorWithKernel& op,
|
|
const platform::Place& place,
|
|
const framework::AttributeMap& attrs) {
|
|
return PrepareOpImpl<VariableWrapper>(ins, outs, op, place, attrs);
|
|
}
|
|
|
|
template <typename VarType>
|
|
static void PreparedOpRunImpl(
|
|
const framework::OperatorBase& op, const framework::RuntimeContext& ctx,
|
|
const framework::OperatorWithKernel::OpKernelFunc& func,
|
|
platform::DeviceContext* dev_ctx, const NameVarMap<VarType>& ins,
|
|
const NameVarMap<VarType>& outs, const framework::AttributeMap& attrs) {
|
|
// TODO(zjl): remove scope in dygraph
|
|
framework::Scope scope;
|
|
|
|
DygraphInferShapeContext<VarType> infer_shape_ctx(&ins, &outs, &attrs,
|
|
op.Type());
|
|
static_cast<const framework::OperatorWithKernel&>(op).InferShape(
|
|
&infer_shape_ctx);
|
|
|
|
func(DygraphExecutionContext<VarType>(op, scope, *dev_ctx, ctx, ins, outs,
|
|
attrs));
|
|
}
|
|
|
|
void PreparedOp::Run(const NameVarMap<VarBase>& ins,
|
|
const NameVarMap<VarBase>& outs,
|
|
const framework::AttributeMap& attrs) {
|
|
PreparedOpRunImpl<VarBase>(op_, ctx_, func_, dev_ctx_, ins, outs, attrs);
|
|
}
|
|
|
|
void PreparedOp::Run(const NameVarMap<VariableWrapper>& ins,
|
|
const NameVarMap<VariableWrapper>& outs,
|
|
const framework::AttributeMap& attrs) {
|
|
PreparedOpRunImpl<VariableWrapper>(op_, ctx_, func_, dev_ctx_, ins, outs,
|
|
attrs);
|
|
}
|
|
|
|
} // namespace imperative
|
|
} // namespace paddle
|