You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
209 lines
5.8 KiB
209 lines
5.8 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "Layer.h"
|
|
#include "Projection.h"
|
|
#include "paddle/utils/Stat.h"
|
|
|
|
namespace paddle {
|
|
|
|
/**
|
|
* A concatenate layer has multiple input layers. It concatenates rows of
|
|
* each input as one row for the output of this layer and apply activation.
|
|
*/
|
|
class ConcatenateLayer : public Layer {
|
|
public:
|
|
explicit ConcatenateLayer(const LayerConfig& config) : Layer(config) {}
|
|
|
|
~ConcatenateLayer() {}
|
|
|
|
bool init(const LayerMap& layerMap,
|
|
const ParameterMap& parameterMap) override;
|
|
|
|
void forward(PassType passType) override;
|
|
void backward(const UpdateCallback& callback = nullptr) override;
|
|
};
|
|
|
|
REGISTER_LAYER(concat, ConcatenateLayer);
|
|
|
|
bool ConcatenateLayer::init(const LayerMap& layerMap,
|
|
const ParameterMap& parameterMap) {
|
|
/* Initialize the basic parent class */
|
|
if (!Layer::init(layerMap, parameterMap)) return false;
|
|
|
|
CHECK(!biasParameter_);
|
|
|
|
return true;
|
|
}
|
|
|
|
void ConcatenateLayer::forward(PassType passType) {
|
|
Layer::forward(passType);
|
|
|
|
int batchSize = getInput(0).getBatchSize();
|
|
int size = getSize();
|
|
reserveOutput(batchSize, size);
|
|
|
|
const MatrixPtr& out = getOutputValue();
|
|
int offset = 0;
|
|
|
|
for (size_t i = 0; i != inputLayers_.size(); ++i) {
|
|
const MatrixPtr& in = getInputValue(i);
|
|
size_t inSize = in->getWidth();
|
|
out->assignAtOffset(*in, offset);
|
|
offset += inSize;
|
|
}
|
|
CHECK_EQ(size, offset);
|
|
|
|
/* activation */ {
|
|
REGISTER_TIMER_INFO("FwAtvTimer", getName().c_str());
|
|
forwardActivation();
|
|
}
|
|
}
|
|
|
|
void ConcatenateLayer::backward(const UpdateCallback& callback) {
|
|
(void)callback;
|
|
|
|
/* Do activation */ {
|
|
REGISTER_TIMER_INFO("BpAvtTimer", getName().c_str());
|
|
backwardActivation();
|
|
}
|
|
|
|
const MatrixPtr& out = getOutputGrad();
|
|
int offset = 0;
|
|
|
|
for (size_t i = 0; i != inputLayers_.size(); ++i) {
|
|
const MatrixPtr& in = getInputGrad(i);
|
|
size_t inSize = getInputValue(i)->getWidth();
|
|
if (in) {
|
|
in->addAtOffset(*out, offset);
|
|
}
|
|
offset += inSize;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* concat2 layer is like concat layer, but each input layer was
|
|
* processed by a Projection.
|
|
*/
|
|
class ConcatenateLayer2 : public Layer {
|
|
public:
|
|
explicit ConcatenateLayer2(const LayerConfig& config) : Layer(config) {}
|
|
|
|
~ConcatenateLayer2() {}
|
|
|
|
bool init(const LayerMap& layerMap,
|
|
const ParameterMap& parameterMap) override;
|
|
|
|
void forward(PassType passType) override;
|
|
void backward(const UpdateCallback& callback = nullptr) override;
|
|
|
|
protected:
|
|
std::vector<std::unique_ptr<Projection>> projections_;
|
|
std::vector<Argument> projOutput_;
|
|
std::vector<std::pair<size_t, size_t>> projCol_;
|
|
bool sharedBias_;
|
|
std::unique_ptr<Weight> biases_;
|
|
};
|
|
|
|
REGISTER_LAYER(concat2, ConcatenateLayer2);
|
|
|
|
bool ConcatenateLayer2::init(const LayerMap& layerMap,
|
|
const ParameterMap& parameterMap) {
|
|
/* Initialize the basic parent class */
|
|
if (!Layer::init(layerMap, parameterMap)) return false;
|
|
|
|
CHECK_EQ(inputLayers_.size(), parameters_.size());
|
|
projections_.reserve(inputLayers_.size());
|
|
projCol_.reserve(inputLayers_.size());
|
|
projOutput_.resize(inputLayers_.size());
|
|
|
|
size_t startCol = 0;
|
|
size_t endCol = 0;
|
|
for (size_t i = 0; i < inputLayers_.size(); i++) {
|
|
projections_.emplace_back(Projection::create(
|
|
config_.inputs(i).proj_conf(), parameters_[i], useGpu_));
|
|
|
|
endCol += projections_[i]->getOutputSize();
|
|
projCol_.push_back(std::make_pair(startCol, endCol));
|
|
startCol = endCol;
|
|
}
|
|
CHECK_EQ(getSize(), endCol);
|
|
|
|
/* initialize biases_ */
|
|
if (biasParameter_.get() != NULL) {
|
|
sharedBias_ = config_.shared_biases();
|
|
size_t psize = config_.bias_size();
|
|
biases_ = std::unique_ptr<Weight>(new Weight(1, psize, biasParameter_));
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void ConcatenateLayer2::forward(PassType passType) {
|
|
Layer::forward(passType);
|
|
|
|
int batchSize = getInput(0).getBatchSize();
|
|
int size = getSize();
|
|
resetOutput(batchSize, size);
|
|
|
|
for (size_t i = 0; i < projections_.size(); i++) {
|
|
size_t startCol = projCol_[i].first;
|
|
size_t endCol = projCol_[i].second;
|
|
projOutput_[i].value = output_.value->subColMatrix(startCol, endCol);
|
|
if (output_.grad) {
|
|
projOutput_[i].grad = output_.grad->subColMatrix(startCol, endCol);
|
|
}
|
|
}
|
|
|
|
{
|
|
AsyncGpuBlock block;
|
|
for (size_t i = 0; i != inputLayers_.size(); ++i) {
|
|
projections_[i]->forward(&getInput(i), &projOutput_[i], passType);
|
|
}
|
|
}
|
|
|
|
/* add the bias-vector */
|
|
if (biases_) {
|
|
REGISTER_TIMER_INFO("FwBiasTimer", getName().c_str());
|
|
output_.value->addBias(*(biases_->getW()), 1, sharedBias_);
|
|
}
|
|
|
|
/* activation */ {
|
|
REGISTER_TIMER_INFO("FwAtvTimer", getName().c_str());
|
|
forwardActivation();
|
|
}
|
|
}
|
|
|
|
void ConcatenateLayer2::backward(const UpdateCallback& callback) {
|
|
/* Do activation */ {
|
|
REGISTER_TIMER_INFO("BpAvtTimer", getName().c_str());
|
|
backwardActivation();
|
|
}
|
|
|
|
AsyncGpuBlock block;
|
|
if (biases_ && biases_->getWGrad()) {
|
|
REGISTER_TIMER_INFO("Concat2BpBiasTimer", getName().c_str());
|
|
biases_->getWGrad()->collectBias(*getOutputGrad(), 1, sharedBias_);
|
|
biases_->getParameterPtr()->incUpdate(callback);
|
|
}
|
|
|
|
for (size_t i = 0; i != inputLayers_.size(); ++i) {
|
|
if (projections_[i]) {
|
|
projections_[i]->backward(callback);
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace paddle
|