You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
156 lines
4.8 KiB
156 lines
4.8 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "Layer.h"
|
|
#include "paddle/math/Matrix.h"
|
|
#include "paddle/utils/Logging.h"
|
|
#include "paddle/utils/Stat.h"
|
|
|
|
namespace paddle {
|
|
|
|
/**
|
|
* @brief A layer for weighted sum of vectors,
|
|
* which is used in NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND
|
|
* TRANSLATE
|
|
* - Input: the the size of the first input is weightDim,
|
|
* and the size of the second input is weightdim * dataDim.
|
|
* - Output: the sizeof the output is dataDim
|
|
* \f[
|
|
* out(j) = \sum_{i}(in0(i) * in1(i,j + i * dataDim)),
|
|
* i = 0,1,...,(weightDim-1); j = 0, 1,...,(dataDim-1)
|
|
* \f]
|
|
* Note that the above computation is for one sample. Multiple samples are
|
|
* processed in one batch.
|
|
*
|
|
* The config file api is linear_comb_layer.
|
|
*/
|
|
class ConvexCombinationLayer : public Layer {
|
|
protected:
|
|
/// A matrix pointer pointing to second input.
|
|
MatrixPtr tmpMtx0;
|
|
/// A matrix pointer pointing to first input.
|
|
MatrixPtr tmpRow0;
|
|
/// A matrix pointer pointing to output.
|
|
MatrixPtr tmpRow1;
|
|
|
|
public:
|
|
explicit ConvexCombinationLayer(const LayerConfig& config) : Layer(config) {}
|
|
|
|
~ConvexCombinationLayer() {}
|
|
|
|
bool init(const LayerMap& layerMap,
|
|
const ParameterMap& parameterMap) override;
|
|
|
|
void forward(PassType passType) override;
|
|
void backward(const UpdateCallback& callback = nullptr) override;
|
|
};
|
|
|
|
REGISTER_LAYER(convex_comb, ConvexCombinationLayer);
|
|
|
|
bool ConvexCombinationLayer::init(const LayerMap& layerMap,
|
|
const ParameterMap& parameterMap) {
|
|
/* Initialize the basic parent class */
|
|
Layer::init(layerMap, parameterMap);
|
|
|
|
CHECK_EQ(2U, inputLayers_.size());
|
|
size_t dataDim = getSize();
|
|
size_t weightDim = inputLayers_[0]->getSize();
|
|
|
|
CHECK_EQ(weightDim * dataDim, inputLayers_[1]->getSize())
|
|
<< "Dimension mismatch";
|
|
|
|
tmpRow0 = Matrix::create(nullptr,
|
|
/* height= */ 1,
|
|
weightDim,
|
|
/* trans= */ false,
|
|
useGpu_);
|
|
tmpRow1 = Matrix::create(nullptr,
|
|
/* height= */ 1,
|
|
dataDim,
|
|
/* trans= */ false,
|
|
useGpu_);
|
|
tmpMtx0 = Matrix::create(nullptr,
|
|
/* height= */ weightDim,
|
|
dataDim,
|
|
/* trans= */ false,
|
|
useGpu_);
|
|
|
|
return true;
|
|
}
|
|
|
|
void ConvexCombinationLayer::forward(PassType passType) {
|
|
Layer::forward(passType);
|
|
|
|
MatrixPtr inV0 = getInputValue(0);
|
|
MatrixPtr inV1 = getInputValue(1);
|
|
|
|
size_t batchSize = inV0->getHeight();
|
|
size_t weightDim = inV0->getWidth();
|
|
size_t dataDim = getSize();
|
|
|
|
CHECK_EQ(batchSize, inV1->getHeight());
|
|
|
|
{
|
|
REGISTER_TIMER_INFO("FwResetTimer", getName().c_str());
|
|
reserveOutput(batchSize, dataDim);
|
|
}
|
|
|
|
MatrixPtr outV = getOutputValue();
|
|
|
|
REGISTER_TIMER_INFO("FwCvxCombTimer", getName().c_str());
|
|
for (size_t i = 0; i < batchSize; i++) {
|
|
tmpMtx0->setData(inV1->getData() + i * weightDim * dataDim);
|
|
tmpRow0->setData(inV0->getData() + i * weightDim);
|
|
tmpRow1->setData(outV->getData() + i * dataDim);
|
|
|
|
tmpRow1->mul(*tmpRow0, *tmpMtx0, 1, 0);
|
|
}
|
|
}
|
|
|
|
void ConvexCombinationLayer::backward(const UpdateCallback& callback) {
|
|
MatrixPtr outG = getOutputGrad();
|
|
MatrixPtr inV0 = getInputValue(0);
|
|
MatrixPtr inV1 = getInputValue(1);
|
|
MatrixPtr inG0 = getInputGrad(0);
|
|
MatrixPtr inG1 = getInputGrad(1);
|
|
|
|
size_t batchSize = inV0->getHeight();
|
|
size_t weightDim = inV0->getWidth();
|
|
size_t dataDim = getSize();
|
|
|
|
REGISTER_TIMER_INFO("BwCvxCombTimer", getName().c_str());
|
|
|
|
if (inG0) {
|
|
for (size_t i = 0; i < batchSize; i++) {
|
|
tmpRow0->setData(inG0->getData() + i * weightDim);
|
|
tmpRow1->setData(outG->getData() + i * dataDim);
|
|
tmpMtx0->setData(inV1->getData() + i * weightDim * dataDim);
|
|
|
|
tmpRow0->mul(*tmpRow1, *(tmpMtx0->getTranspose()), 1, 1);
|
|
}
|
|
}
|
|
|
|
if (inG1) {
|
|
for (size_t i = 0; i < batchSize; i++) {
|
|
tmpRow0->setData(inV0->getData() + i * weightDim);
|
|
tmpRow1->setData(outG->getData() + i * dataDim);
|
|
tmpMtx0->setData(inG1->getData() + i * weightDim * dataDim);
|
|
|
|
tmpMtx0->mul(*(tmpRow0->getTranspose()), *tmpRow1, 1, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace paddle
|