You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
234 lines
8.5 KiB
234 lines
8.5 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import six
|
|
import abc
|
|
import numpy as np
|
|
import paddle.fluid as fluid
|
|
|
|
import logging
|
|
|
|
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
|
|
logging.basicConfig(level=logging.INFO, format=FORMAT)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
__all__ = ['Metric', 'Accuracy']
|
|
|
|
|
|
@six.add_metaclass(abc.ABCMeta)
|
|
class Metric(object):
|
|
"""
|
|
Base class for metric, encapsulates metric logic and APIs
|
|
Usage:
|
|
|
|
m = SomeMetric()
|
|
for prediction, label in ...:
|
|
m.update(prediction, label)
|
|
m.accumulate()
|
|
|
|
Advanced usage for :code:`add_metric_op`
|
|
Metric calculation can be accelerated by calculating metric states
|
|
from model outputs and labels by Paddle OPs in :code:`add_metric_op`,
|
|
metric states will be fetch as numpy array and call :code:`update`
|
|
with states in numpy format.
|
|
Metric calculated as follows (operations in Model and Metric are
|
|
indicated with curly brackets, while data nodes not):
|
|
inputs & labels || ------------------
|
|
| ||
|
|
{model} ||
|
|
| ||
|
|
outputs & labels ||
|
|
| || tensor data
|
|
{Metric.add_metric_op} ||
|
|
| ||
|
|
metric states(tensor) ||
|
|
| ||
|
|
{fetch as numpy} || ------------------
|
|
| ||
|
|
metric states(numpy) || numpy data
|
|
| ||
|
|
{Metric.update} \/ ------------------
|
|
Examples:
|
|
|
|
For :code:`Accuracy` metric, which takes :code:`pred` and :code:`label`
|
|
as inputs, we can calculate the correct prediction matrix between
|
|
:code:`pred` and :code:`label` in :code:`add_metric_op`.
|
|
For examples, prediction results contains 10 classes, while :code:`pred`
|
|
shape is [N, 10], :code:`label` shape is [N, 1], N is mini-batch size,
|
|
and we only need to calculate accurary of top-1 and top-5, we could
|
|
calculated the correct prediction matrix of the top-5 scores of the
|
|
prediction of each sample like follows, while the correct prediction
|
|
matrix shape is [N, 5].
|
|
.. code-block:: python
|
|
def add_metric_op(pred, label):
|
|
# sort prediction and slice the top-5 scores
|
|
pred = fluid.layers.argsort(pred, descending=True)[1][:, :5]
|
|
# calculate whether the predictions are correct
|
|
correct = pred == label
|
|
return fluid.layers.cast(correct, dtype='float32')
|
|
With the :code:`add_metric_op`, we split some calculations to OPs(which
|
|
may run on GPU devices, will be faster), and only fetch 1 tensor with
|
|
shape as [N, 5] instead of 2 tensors with shapes as [N, 10] and [N, 1].
|
|
:code:`update` can be define as follows:
|
|
.. code-block:: python
|
|
def update(self, correct):
|
|
accs = []
|
|
for i, k in enumerate(self.topk):
|
|
num_corrects = correct[:, :k].sum()
|
|
num_samples = len(correct)
|
|
accs.append(float(num_corrects) / num_samples)
|
|
self.total[i] += num_corrects
|
|
self.count[i] += num_samples
|
|
return accs
|
|
"""
|
|
|
|
def __init__(self):
|
|
pass
|
|
|
|
@abc.abstractmethod
|
|
def reset(self):
|
|
"""
|
|
Reset states and result
|
|
"""
|
|
raise NotImplementedError("function 'reset' not implemented in {}.".
|
|
format(self.__class__.__name__))
|
|
|
|
@abc.abstractmethod
|
|
def update(self, *args):
|
|
"""
|
|
Update states for metric
|
|
|
|
Inputs of :code:`update` is the outputs of :code:`Metric.add_metric_op`,
|
|
if :code:`add_metric_op` is not defined, the inputs of :code:`update`
|
|
will be flatten arguments of **output** of mode and **label** from data:
|
|
:code:`update(output1, output2, ..., label1, label2,...)`
|
|
|
|
see :code:`Metric.add_metric_op`
|
|
"""
|
|
raise NotImplementedError("function 'update' not implemented in {}.".
|
|
format(self.__class__.__name__))
|
|
|
|
@abc.abstractmethod
|
|
def accumulate(self):
|
|
"""
|
|
Accumulates statistics, computes and returns the metric value
|
|
"""
|
|
raise NotImplementedError(
|
|
"function 'accumulate' not implemented in {}.".format(
|
|
self.__class__.__name__))
|
|
|
|
@abc.abstractmethod
|
|
def name(self):
|
|
"""
|
|
Returns metric name
|
|
"""
|
|
raise NotImplementedError("function 'name' not implemented in {}.".
|
|
format(self.__class__.__name__))
|
|
|
|
def add_metric_op(self, *args):
|
|
"""
|
|
This API is advanced usage to accelerate metric calculating, calulations
|
|
from outputs of model to the states which should be updated by Metric can
|
|
be defined here, where Paddle OPs is also supported. Outputs of this API
|
|
will be the inputs of "Metric.update".
|
|
|
|
If :code:`add_metric_op` is defined, it will be called with **outputs**
|
|
of model and **labels** from data as arguments, all outputs and labels
|
|
will be concatenated and flatten and each filed as a separate argument
|
|
as follows:
|
|
:code:`add_metric_op(output1, output2, ..., label1, label2,...)`
|
|
|
|
If :code:`add_metric_op` is not defined, default behaviour is to pass
|
|
input to output, so output format will be:
|
|
:code:`return output1, output2, ..., label1, label2,...`
|
|
|
|
see :code:`Metric.update`
|
|
"""
|
|
return args
|
|
|
|
|
|
class Accuracy(Metric):
|
|
"""
|
|
Encapsulates accuracy metric logic
|
|
|
|
Examples:
|
|
|
|
.. code-block:: python
|
|
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
import paddle.incubate.hapi as hapi
|
|
|
|
fluid.enable_dygraph()
|
|
|
|
train_dataset = hapi.datasets.MNIST(mode='train')
|
|
|
|
model = hapi.Model(hapi.vision.LeNet(classifier_activation=None))
|
|
optim = fluid.optimizer.Adam(
|
|
learning_rate=0.001, parameter_list=model.parameters())
|
|
model.prepare(
|
|
optim,
|
|
loss_function=paddle.nn.CrossEntropyLoss(),
|
|
metrics=hapi.metrics.Accuracy())
|
|
|
|
model.fit(train_dataset, batch_size=64)
|
|
|
|
"""
|
|
|
|
def __init__(self, topk=(1, ), name=None, *args, **kwargs):
|
|
super(Accuracy, self).__init__(*args, **kwargs)
|
|
self.topk = topk
|
|
self.maxk = max(topk)
|
|
self._init_name(name)
|
|
self.reset()
|
|
|
|
def add_metric_op(self, pred, label, *args):
|
|
pred = fluid.layers.argsort(pred, descending=True)[1][:, :self.maxk]
|
|
correct = pred == label
|
|
return fluid.layers.cast(correct, dtype='float32')
|
|
|
|
def update(self, correct, *args):
|
|
accs = []
|
|
for i, k in enumerate(self.topk):
|
|
num_corrects = correct[:, :k].sum()
|
|
num_samples = len(correct)
|
|
accs.append(float(num_corrects) / num_samples)
|
|
self.total[i] += num_corrects
|
|
self.count[i] += num_samples
|
|
return accs
|
|
|
|
def reset(self):
|
|
self.total = [0.] * len(self.topk)
|
|
self.count = [0] * len(self.topk)
|
|
|
|
def accumulate(self):
|
|
res = []
|
|
for t, c in zip(self.total, self.count):
|
|
res.append(float(t) / c)
|
|
return res
|
|
|
|
def _init_name(self, name):
|
|
name = name or 'acc'
|
|
if self.maxk != 1:
|
|
self._name = ['{}_top{}'.format(name, k) for k in self.topk]
|
|
else:
|
|
self._name = [name]
|
|
|
|
def name(self):
|
|
return self._name
|