You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							140 lines
						
					
					
						
							5.5 KiB
						
					
					
				
			
		
		
	
	
							140 lines
						
					
					
						
							5.5 KiB
						
					
					
				| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #pragma once
 | |
| #include "paddle/fluid/framework/op_registry.h"
 | |
| #include "paddle/fluid/operators/math/cos_sim_functor.h"
 | |
| #include "paddle/fluid/operators/math/math_function.h"
 | |
| #include "paddle/fluid/platform/for_range.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| using Tensor = framework::Tensor;
 | |
| 
 | |
| template <typename DeviceContext, typename T>
 | |
| class CosSimKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& context) const override {
 | |
|     // get Tensor
 | |
|     auto* in_x = context.Input<framework::LoDTensor>("X");
 | |
|     auto* in_y = context.Input<Tensor>("Y");
 | |
|     auto* out_z = context.Output<framework::LoDTensor>("Out");
 | |
|     auto* out_x_norm = context.Output<Tensor>("XNorm");
 | |
|     auto* out_y_norm = context.Output<Tensor>("YNorm");
 | |
| 
 | |
|     int rows_x = in_x->dims()[0];
 | |
|     int rows_y = in_y->dims()[0];
 | |
|     out_z->Resize({rows_x, 1});
 | |
|     out_x_norm->Resize({rows_x, 1});
 | |
|     out_y_norm->Resize({rows_y, 1});
 | |
|     out_z->mutable_data<T>(context.GetPlace());
 | |
|     out_x_norm->mutable_data<T>(context.GetPlace());
 | |
|     out_y_norm->mutable_data<T>(context.GetPlace());
 | |
|     out_z->set_lod(in_x->lod());
 | |
| 
 | |
|     int cols = framework::product(in_x->dims()) / rows_x;
 | |
| 
 | |
|     if (rows_x == rows_y) {
 | |
|       math::CosSimFunctor<T, true> functor(
 | |
|           in_x->data<T>(), in_y->data<T>(), out_x_norm->data<T>(),
 | |
|           out_y_norm->data<T>(), out_z->data<T>(), cols);
 | |
|       platform::ForRange<DeviceContext> for_range(
 | |
|           static_cast<const DeviceContext&>(context.device_context()), rows_x);
 | |
|       for_range(functor);
 | |
|     } else {
 | |
|       math::CosSimFunctor<T, false> functor(
 | |
|           in_x->data<T>(), in_y->data<T>(), out_x_norm->data<T>(),
 | |
|           out_y_norm->data<T>(), out_z->data<T>(), cols);
 | |
|       platform::ForRange<DeviceContext> for_range(
 | |
|           static_cast<const DeviceContext&>(context.device_context()), rows_x);
 | |
|       for_range(functor);
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename DeviceContext, typename T>
 | |
| class CosSimGradKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& context) const override {
 | |
|     // get Tensor
 | |
|     auto* in_x = context.Input<Tensor>("X");
 | |
|     auto* in_y = context.Input<Tensor>("Y");
 | |
|     auto* in_z = context.Input<Tensor>("Out");
 | |
|     auto* in_x_norm = context.Input<Tensor>("XNorm");
 | |
|     auto* in_y_norm = context.Input<Tensor>("YNorm");
 | |
|     auto* out_grad_x = context.Output<Tensor>(framework::GradVarName("X"));
 | |
|     auto* out_grad_y = context.Output<Tensor>(framework::GradVarName("Y"));
 | |
|     auto* in_grad_z = context.Input<Tensor>(framework::GradVarName("Out"));
 | |
| 
 | |
|     // compute gradident
 | |
|     int rows_x = in_x->dims()[0];
 | |
|     int rows_y = in_y->dims()[0];
 | |
|     int cols = framework::product(in_x->dims()) / rows_x;
 | |
| 
 | |
|     if (rows_x == rows_y) {
 | |
|       if (out_grad_x) {
 | |
|         out_grad_x->Resize(in_x->dims());
 | |
|         math::CosSimGradFunctor<T> functor(
 | |
|             in_x_norm->data<T>(), in_y_norm->data<T>(), in_x->data<T>(),
 | |
|             in_y->data<T>(), in_z->data<T>(), in_grad_z->data<T>(),
 | |
|             out_grad_x->mutable_data<T>(context.GetPlace()), cols);
 | |
|         platform::ForRange<DeviceContext> for_range(
 | |
|             static_cast<const DeviceContext&>(context.device_context()),
 | |
|             rows_x);
 | |
|         for_range(functor);
 | |
|       }
 | |
|       if (out_grad_y) {
 | |
|         out_grad_y->Resize(in_y->dims());
 | |
|         math::CosSimGradFunctor<T> functor(
 | |
|             in_y_norm->data<T>(), in_x_norm->data<T>(), in_y->data<T>(),
 | |
|             in_x->data<T>(), in_z->data<T>(), in_grad_z->data<T>(),
 | |
|             out_grad_y->mutable_data<T>(context.GetPlace()), cols);
 | |
|         platform::ForRange<DeviceContext> for_range(
 | |
|             static_cast<const DeviceContext&>(context.device_context()),
 | |
|             rows_x);
 | |
|         for_range(functor);
 | |
|       }
 | |
|     } else {
 | |
|       if (out_grad_x) {
 | |
|         out_grad_x->Resize(in_x->dims());
 | |
|         math::CosSimDxFunctor<T> functor(
 | |
|             in_x_norm->data<T>(), in_y_norm->data<T>(), in_x->data<T>(),
 | |
|             in_y->data<T>(), in_z->data<T>(), in_grad_z->data<T>(),
 | |
|             out_grad_x->mutable_data<T>(context.GetPlace()), cols);
 | |
|         platform::ForRange<DeviceContext> for_range(
 | |
|             static_cast<const DeviceContext&>(context.device_context()),
 | |
|             rows_x);
 | |
|         for_range(functor);
 | |
|       }
 | |
|       if (out_grad_y) {
 | |
|         out_grad_y->Resize(in_y->dims());
 | |
|         out_grad_y->mutable_data<T>(context.GetPlace());
 | |
|         math::SetConstant<DeviceContext, T> set_zero;
 | |
|         auto& dev_ctx = context.template device_context<DeviceContext>();
 | |
|         set_zero(dev_ctx, out_grad_y, static_cast<T>(0));
 | |
| 
 | |
|         math::CosSimDyFunctor<DeviceContext, T> functor;
 | |
|         functor(dev_ctx, in_x_norm->data<T>(), in_y_norm->data<T>(),
 | |
|                 in_x->data<T>(), in_y->data<T>(), in_z->data<T>(),
 | |
|                 in_grad_z->data<T>(), static_cast<size_t>(rows_x),
 | |
|                 static_cast<size_t>(cols), out_grad_y->data<T>());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 |