You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							297 lines
						
					
					
						
							12 KiB
						
					
					
				
			
		
		
	
	
							297 lines
						
					
					
						
							12 KiB
						
					
					
				| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <vector>
 | |
| 
 | |
| #include <boost/preprocessor/arithmetic/div.hpp>
 | |
| #include <boost/preprocessor/arithmetic/mod.hpp>
 | |
| #include <boost/preprocessor/comparison/greater.hpp>
 | |
| #include <boost/preprocessor/comparison/greater_equal.hpp>
 | |
| #include <boost/preprocessor/control/if.hpp>
 | |
| #include <boost/preprocessor/repetition/repeat.hpp>
 | |
| #include "paddle/fluid/framework/eigen.h"
 | |
| #include "paddle/fluid/framework/op_registry.h"
 | |
| #include "paddle/fluid/framework/operator.h"
 | |
| 
 | |
| #define MAX_RANK_SUPPORTED 6
 | |
| 
 | |
| #define EXPAND_TEMPLATE(z, n, data) \
 | |
|   case n + 1: {                     \
 | |
|     Expand<n + 1>(context);         \
 | |
|     break;                          \
 | |
|   }
 | |
| #define REP_EXPAND_TEMPLATE(n) BOOST_PP_REPEAT(n, EXPAND_TEMPLATE, ~)
 | |
| #define COND(n) BOOST_PP_GREATER_EQUAL(n, BOOST_PP_MOD(n, MAX_RANK_SUPPORTED))
 | |
| #define EXPAND_GRAD_CASE(n)                                        \
 | |
|   case n: {                                                        \
 | |
|     ExpandBackward<n>(context, reshape_dims_vec, reduce_dims_vec); \
 | |
|     break;                                                         \
 | |
|   }
 | |
| #define EXPAND_GRAD_TEMPLATE(z, n, data) \
 | |
|   BOOST_PP_IF(COND(n), EXPAND_GRAD_CASE(n), )
 | |
| #define REP_EXPAND_GRAD_TEMPLATE(n) BOOST_PP_REPEAT(n, EXPAND_GRAD_TEMPLATE, ~)
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| inline std::vector<int> get_expand_shape(
 | |
|     const framework::ExecutionContext& ctx) {
 | |
|   if (ctx.HasInput("Shape")) {
 | |
|     auto* shape_tensor = ctx.Input<framework::LoDTensor>("Shape");
 | |
|     auto* shape_data = shape_tensor->data<int>();
 | |
|     framework::Tensor cpu_shape_tensor;
 | |
|     if (platform::is_gpu_place(shape_tensor->place())) {
 | |
|       TensorCopySync(*shape_tensor, platform::CPUPlace(), &cpu_shape_tensor);
 | |
|       shape_data = cpu_shape_tensor.data<int>();
 | |
|     }
 | |
|     auto vec_shape =
 | |
|         std::vector<int>(shape_data, shape_data + shape_tensor->numel());
 | |
|     return vec_shape;
 | |
|   }
 | |
| 
 | |
|   auto list_expand_shapes_tensor =
 | |
|       ctx.MultiInput<framework::Tensor>("expand_shapes_tensor");
 | |
|   if (list_expand_shapes_tensor.size() > 0) {
 | |
|     // get tensor from
 | |
|     std::vector<int> vec_epxand_shape;
 | |
|     for (size_t i = 0; i < list_expand_shapes_tensor.size(); ++i) {
 | |
|       auto tensor = list_expand_shapes_tensor[i];
 | |
|       if (platform::is_gpu_place(tensor->place())) {
 | |
|         framework::Tensor temp;
 | |
|         TensorCopySync(*tensor, platform::CPUPlace(), &temp);
 | |
|         vec_epxand_shape.push_back(*temp.data<int32_t>());
 | |
|       } else {
 | |
|         vec_epxand_shape.push_back(*tensor->data<int32_t>());
 | |
|       }
 | |
|     }
 | |
|     return vec_epxand_shape;
 | |
|   } else {
 | |
|     return ctx.Attr<std::vector<int>>("shape");
 | |
|   }
 | |
| }
 | |
| 
 | |
| using Tensor = framework::Tensor;
 | |
| template <typename T, int MajorType = Eigen::RowMajor,
 | |
|           typename IndexType = Eigen::DenseIndex>
 | |
| using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
 | |
| template <typename T, size_t D, int MajorType = Eigen::RowMajor,
 | |
|           typename IndexType = Eigen::DenseIndex>
 | |
| using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
 | |
| using framework::To32BitIndex;
 | |
| 
 | |
| template <typename DeviceContext, typename T>
 | |
| class ExpandV2Kernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& context) const override {
 | |
|     auto rank = context.Input<Tensor>("X")->dims().size();
 | |
|     PADDLE_ENFORCE_GE(
 | |
|         rank, 1,
 | |
|         platform::errors::InvalidArgument(
 | |
|             "The rank of the input 'X' for expand_v2 op must be positive, "
 | |
|             "but the value received is %d.",
 | |
|             rank));
 | |
|     PADDLE_ENFORCE_LE(
 | |
|         rank, MAX_RANK_SUPPORTED,
 | |
|         platform::errors::InvalidArgument(
 | |
|             "The rank of the input 'X' for expand_v2 op must be less than "
 | |
|             "or equal to %d, but the value received is %d.",
 | |
|             MAX_RANK_SUPPORTED, rank));
 | |
|     auto expand_shape = get_expand_shape(context);
 | |
|     auto shape_size = expand_shape.size();
 | |
|     PADDLE_ENFORCE_GE(
 | |
|         shape_size, rank,
 | |
|         platform::errors::InvalidArgument(
 | |
|             "The number (%d) of elements of 'shape' for expand_v2 op must be "
 | |
|             "greater than or equal to the rank (%d) of the input 'X'.",
 | |
|             shape_size, rank));
 | |
|     PADDLE_ENFORCE_LE(
 | |
|         shape_size, MAX_RANK_SUPPORTED,
 | |
|         platform::errors::InvalidArgument(
 | |
|             "The number (%d) of elements of 'shape' for expand_v2 op must be "
 | |
|             "less than or equal to %d.",
 | |
|             shape_size, MAX_RANK_SUPPORTED));
 | |
|     rank = std::max(rank, static_cast<int>(shape_size));
 | |
|     switch (rank) { REP_EXPAND_TEMPLATE(MAX_RANK_SUPPORTED) }
 | |
|   }
 | |
| 
 | |
|  protected:
 | |
|   template <int Rank>
 | |
|   void Expand(const framework::ExecutionContext& context) const {
 | |
|     auto* in0 = context.Input<Tensor>("X");
 | |
| 
 | |
|     auto in_dims = in0->dims();
 | |
|     auto expand_shape = get_expand_shape(context);
 | |
|     auto vec_in_dims = framework::vectorize<int>(in_dims);
 | |
|     auto diff = expand_shape.size() - vec_in_dims.size();
 | |
|     vec_in_dims.insert(vec_in_dims.begin(), diff, 1);
 | |
|     std::vector<int> repeat_times(vec_in_dims.size());
 | |
|     for (size_t i = 0; i < vec_in_dims.size(); ++i) {
 | |
|       PADDLE_ENFORCE_NE(expand_shape[i], 0,
 | |
|                         platform::errors::InvalidArgument(
 | |
|                             "The expanded size cannot be zero."));
 | |
|       if (i < diff) {
 | |
|         PADDLE_ENFORCE_GT(
 | |
|             expand_shape[i], 0,
 | |
|             platform::errors::InvalidArgument(
 | |
|                 "The expanded size (%d) for non-existing dimensions must be "
 | |
|                 "positive for expand_v2 op.",
 | |
|                 expand_shape[i]));
 | |
|         repeat_times[i] = expand_shape[i];
 | |
|       } else if (expand_shape[i] > 0) {
 | |
|         if (vec_in_dims[i] != 1) {
 | |
|           PADDLE_ENFORCE_EQ(
 | |
|               vec_in_dims[i], expand_shape[i],
 | |
|               platform::errors::InvalidArgument(
 | |
|                   "The value (%d) of the non-singleton dimension does not match"
 | |
|                   " the corresponding value (%d) in shape for expand_v2 op.",
 | |
|                   vec_in_dims[i], expand_shape[i]));
 | |
|           repeat_times[i] = 1;
 | |
|         } else {
 | |
|           repeat_times[i] = expand_shape[i];
 | |
|         }
 | |
|       } else {
 | |
|         PADDLE_ENFORCE_EQ(
 | |
|             expand_shape[i], -1,
 | |
|             platform::errors::InvalidArgument(
 | |
|                 "When the value in shape is negative for expand_v2 op, "
 | |
|                 "only -1 is supported, but the value received is %d.",
 | |
|                 expand_shape[i]));
 | |
|         repeat_times[i] = 1;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     auto* out0 = context.Output<Tensor>("Out");
 | |
|     Eigen::DSizes<int, Rank> bcast_dims;
 | |
|     for (size_t i = 0; i < repeat_times.size(); ++i) {
 | |
|       bcast_dims[i] = repeat_times[i];
 | |
|     }
 | |
| 
 | |
|     framework::DDim new_in_dims = framework::make_ddim(vec_in_dims);
 | |
|     framework::DDim out_dims(new_in_dims);
 | |
|     for (size_t i = 0; i < repeat_times.size(); ++i) {
 | |
|       out_dims[i] *= repeat_times[i];
 | |
|     }
 | |
| 
 | |
|     out0->Resize(out_dims);
 | |
|     auto x = EigenTensor<T, Rank>::From(*in0, new_in_dims);
 | |
|     out0->mutable_data<T>(context.GetPlace());
 | |
|     auto y = EigenTensor<T, Rank>::From(*out0, out_dims);
 | |
|     auto& place =
 | |
|         *context.template device_context<DeviceContext>().eigen_device();
 | |
|     // use 32-bit index to speed up
 | |
|     bool use_32bit_index = y.size() < Eigen::NumTraits<int>::highest();
 | |
|     if (use_32bit_index) {
 | |
|       To32BitIndex(y).device(place) = To32BitIndex(x).broadcast(bcast_dims);
 | |
|     } else {
 | |
|       y.device(place) = x.broadcast(bcast_dims);
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename DeviceContext, typename T>
 | |
| class ExpandV2GradKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& context) const override {
 | |
|     auto* in0 = context.Input<Tensor>("X");
 | |
|     auto expand_shape = get_expand_shape(context);
 | |
|     auto x_dims = in0->dims();
 | |
|     auto vec_in_dims = framework::vectorize<int>(x_dims);
 | |
|     auto diff = expand_shape.size() - vec_in_dims.size();
 | |
|     vec_in_dims.insert(vec_in_dims.begin(), diff, 1);
 | |
|     // 1. reshape_dims_vec is the broadcast parameter.
 | |
|     // 2. reduce_dims_vec is the dimension parameter to compute gradients. For
 | |
|     //    each dimension expanded, the gradients should be summed to original
 | |
|     //    size.
 | |
|     std::vector<int> repeat_times(vec_in_dims.size());
 | |
|     for (size_t i = 0; i < vec_in_dims.size(); ++i) {
 | |
|       if (expand_shape[i] < 0) {
 | |
|         repeat_times[i] = 1;
 | |
|       } else {
 | |
|         repeat_times[i] = expand_shape[i] / vec_in_dims[i];
 | |
|       }
 | |
|     }
 | |
|     std::vector<int> reshape_dims_vec;
 | |
|     std::vector<int> reduce_dims_vec;
 | |
|     for (size_t i = 0; i < repeat_times.size(); ++i) {
 | |
|       reduce_dims_vec.push_back(reshape_dims_vec.size());
 | |
|       reshape_dims_vec.push_back(repeat_times[i]);
 | |
|       reshape_dims_vec.push_back(vec_in_dims[i]);
 | |
|     }
 | |
| 
 | |
|     int dims = reduce_dims_vec.size();
 | |
| 
 | |
|     bool just_copy = true;
 | |
|     for (size_t i = 0; i < repeat_times.size(); i++) {
 | |
|       if (repeat_times[i] != 1) {
 | |
|         just_copy = false;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     // no need reduce, just copy
 | |
|     if (just_copy) {
 | |
|       auto* in0 = context.Input<Tensor>(framework::GradVarName("Out"));
 | |
|       auto* out0 = context.Output<Tensor>(framework::GradVarName("X"));
 | |
|       out0->mutable_data<T>(context.GetPlace());
 | |
|       framework::TensorCopy(*in0, context.GetPlace(), context.device_context(),
 | |
|                             out0);
 | |
|     } else {
 | |
|       PADDLE_ENFORCE_GE(dims, 1,
 | |
|                         platform::errors::InvalidArgument(
 | |
|                             "The rank of the input 'Out@GRAD' for "
 | |
|                             "expand_v2_grad op must be greater than or "
 | |
|                             "equal to 1, but the value received is %d.",
 | |
|                             dims));
 | |
|       PADDLE_ENFORCE_LE(dims, MAX_RANK_SUPPORTED,
 | |
|                         platform::errors::InvalidArgument(
 | |
|                             "The rank of the input 'Out@GRAD' for "
 | |
|                             "expand_v2_grad op must be less than or equal "
 | |
|                             "to %d, but the value received is %d.",
 | |
|                             MAX_RANK_SUPPORTED, dims));
 | |
|       switch (dims) { REP_EXPAND_GRAD_TEMPLATE(MAX_RANK_SUPPORTED) }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  protected:
 | |
|   template <int Dims>
 | |
|   void ExpandBackward(const framework::ExecutionContext& context,
 | |
|                       const std::vector<int>& reshape_dims_vec,
 | |
|                       const std::vector<int>& reduce_dims_vec) const {
 | |
|     size_t reshape_size = reshape_dims_vec.size();
 | |
|     size_t reduce_size = reduce_dims_vec.size();
 | |
|     auto* in0 = context.Input<Tensor>(framework::GradVarName("Out"));
 | |
|     auto* out0 = context.Output<Tensor>(framework::GradVarName("X"));
 | |
|     out0->mutable_data<T>(context.GetPlace());
 | |
|     auto x_grad = EigenVector<T>::Flatten(*out0);
 | |
|     Eigen::DSizes<int, Dims * 2> reshape_dims;
 | |
|     for (size_t i = 0; i < reshape_size; ++i) {
 | |
|       reshape_dims[i] = reshape_dims_vec[i];
 | |
|     }
 | |
|     Eigen::DSizes<int, Dims> reduce_dims;
 | |
|     for (size_t i = 0; i < reduce_size; ++i) {
 | |
|       reduce_dims[i] = reduce_dims_vec[i];
 | |
|     }
 | |
|     auto out_grad = EigenVector<T>::Flatten(*in0);
 | |
|     x_grad.device(
 | |
|         *context.template device_context<DeviceContext>().eigen_device()) =
 | |
|         out_grad.reshape(reshape_dims)
 | |
|             .sum(reduce_dims)
 | |
|             .reshape(x_grad.dimensions());
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 |