You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							285 lines
						
					
					
						
							11 KiB
						
					
					
				
			
		
		
	
	
							285 lines
						
					
					
						
							11 KiB
						
					
					
				/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
 | 
						|
 | 
						|
Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
you may not use this file except in compliance with the License.
 | 
						|
You may obtain a copy of the License at
 | 
						|
 | 
						|
    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 | 
						|
Unless required by applicable law or agreed to in writing, software
 | 
						|
distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
See the License for the specific language governing permissions and
 | 
						|
limitations under the License. */
 | 
						|
 | 
						|
#include "paddle/fluid/operators/hierarchical_sigmoid_op.h"
 | 
						|
#include <string>
 | 
						|
#include <vector>
 | 
						|
namespace paddle {
 | 
						|
namespace operators {
 | 
						|
 | 
						|
/**
 | 
						|
 * Organize the classes into a binary tree. At each node, a sigmoid function
 | 
						|
 * is used to calculate the probability of belonging to the right branch.
 | 
						|
 * This idea is from "F. Morin, Y. Bengio (AISTATS 05):
 | 
						|
 * Hierarchical Probabilistic Neural Network Language Model."
 | 
						|
 *
 | 
						|
 * Here we uses a simple way of making the binary tree.
 | 
						|
 * Assuming the number of classes C = 6,
 | 
						|
 * The classes are organized as a binary tree in the following way:
 | 
						|
 *
 | 
						|
 * @code{.py}
 | 
						|
 * *-*-*- 2
 | 
						|
 * | | |- 3
 | 
						|
 * | |
 | 
						|
 * | |-*- 4
 | 
						|
 * |   |- 5
 | 
						|
 * |
 | 
						|
 * |-*- 0
 | 
						|
 *   |- 1
 | 
						|
 * @endcode
 | 
						|
 *
 | 
						|
 * where * indicates an internal node, and each leaf node represents a class.
 | 
						|
 * - Node 0 ... C-2 are internal nodes.
 | 
						|
 * - Node C-1 ... 2C-2 are leaf nodes.
 | 
						|
 * - Class c is represented by leaf node \f$c+C-1\f$.
 | 
						|
 *
 | 
						|
 * We assign an id for each node:
 | 
						|
 * - the id of root be 0.
 | 
						|
 * - the left child of a node i is 2*i+1.
 | 
						|
 * - the right child of a node i is 2*i+2.
 | 
						|
 *
 | 
						|
 * It's easy to see that:
 | 
						|
 * - the parent of node i is \f$\left\lfloor(i-1)/2\right\rfloor\f$.
 | 
						|
 * - the j-th level ancestor of node i is
 | 
						|
 * \f$\left\lfloor(i+1)/2^{j+1}\right\rfloor - 1\f$.
 | 
						|
 * - A node i is a left child of its parent if \f$(i-1)\%2==0\f$.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
class HierarchicalSigmoidOp : public framework::OperatorWithKernel {
 | 
						|
 public:
 | 
						|
  using framework::OperatorWithKernel::OperatorWithKernel;
 | 
						|
  void InferShape(framework::InferShapeContext* ctx) const override {
 | 
						|
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "hsigmoid");
 | 
						|
    OP_INOUT_CHECK(ctx->HasInput("Label"), "Input", "Label", "hsigmoid");
 | 
						|
    OP_INOUT_CHECK(ctx->HasInput("W"), "Input", "W", "hsigmoid");
 | 
						|
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "hsigmoid");
 | 
						|
    OP_INOUT_CHECK(ctx->HasOutput("PreOut"), "Output", "PreOut", "hsigmoid");
 | 
						|
 | 
						|
    auto with_prefetch = ctx->Attrs().Get<bool>("remote_prefetch");
 | 
						|
    if (with_prefetch) {
 | 
						|
      OP_INOUT_CHECK(ctx->HasOutput("W_Out"), "Output", "W_Out", "hsigmoid");
 | 
						|
    }
 | 
						|
    const int64_t batch_size = ctx->GetInputDim("X")[0];
 | 
						|
    std::vector<int64_t> output_shape({batch_size, 1});
 | 
						|
    ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
 | 
						|
    ctx->ShareLoD("X", /*->*/ "Out");
 | 
						|
  }
 | 
						|
 | 
						|
 protected:
 | 
						|
  framework::OpKernelType GetExpectedKernelType(
 | 
						|
      const framework::ExecutionContext& ctx) const override {
 | 
						|
    return framework::OpKernelType(
 | 
						|
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Inputs: X, W, Label, PathTable, PathCode, Bias
 | 
						|
 * Outputs: Out, PreOut, W_out
 | 
						|
 */
 | 
						|
template <typename AttrType>
 | 
						|
class HierarchicalSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
 | 
						|
 public:
 | 
						|
  void Make() override {
 | 
						|
    AddInput("X",
 | 
						|
             "(LoDTensor, required) The input tensor with shape [N, D], "
 | 
						|
             "where N is the size of mini-batch, and D is the feature size.");
 | 
						|
    AddInput("W",
 | 
						|
             "(LoDTensor, required), The parameters of hierarchical "
 | 
						|
             "sigmoid operator, each of them is a 2-D tensor, the shape is"
 | 
						|
             "[K, D]. Which K is the num of non-leaf node in Path Tree");
 | 
						|
    AddInput("Label",
 | 
						|
             "(LoDTensor, required), The labels of training data. It's a"
 | 
						|
             "tensor with shape [N, 1].");
 | 
						|
    AddInput("PathTable",
 | 
						|
             "(LoDTensor, optional), The Path Table from root to current word"
 | 
						|
             "it should have shape like [N, L], L is the length of the Path")
 | 
						|
        .AsDispensable();
 | 
						|
    AddInput(
 | 
						|
        "PathCode",
 | 
						|
        "(LoDTensor, optional), The Code on each Node of the Path from root "
 | 
						|
        "to current word"
 | 
						|
        "it should have shape like [N, L], L is the length of the Path")
 | 
						|
        .AsDispensable();
 | 
						|
    AddInput("Bias",
 | 
						|
             "(LoDTensor, optional), The bias is a tensor with shape or "
 | 
						|
             "[num_classes, 1]"
 | 
						|
             "[num_classes - 1, 1].")
 | 
						|
        .AsDispensable();
 | 
						|
    AddOutput(
 | 
						|
        "Out",
 | 
						|
        "(LoDTensor, required) The output of hierarchical sigmoid operator."
 | 
						|
        "The shape is [N, 1].");
 | 
						|
    AddOutput("PreOut",
 | 
						|
              "(LoDTensor, required) A intermedia 2-D tensor with shape "
 | 
						|
              "[batch_size, code_length], where code_length represents the "
 | 
						|
              "maximum path length from root to leaf nodes.")
 | 
						|
        .AsIntermediate();
 | 
						|
    AddOutput(
 | 
						|
        "W_Out",
 | 
						|
        "(LoDTensor, optional) using input 'W' as Output to make it mutable"
 | 
						|
        "When we are using prefetch")
 | 
						|
        .AsIntermediate();
 | 
						|
    AddAttr<AttrType>("num_classes", "(int, optional), The number of classes")
 | 
						|
        .SetDefault(2);
 | 
						|
    // for parameter prefetch
 | 
						|
    AddAttr<bool>("remote_prefetch", "").SetDefault(false);
 | 
						|
    AddAttr<int>("trainer_id", "trainer id from 0 ~ worker_num.").SetDefault(0);
 | 
						|
    AddAttr<std::vector<int64_t>>("height_sections",
 | 
						|
                                  "Height for each output SelectedRows.")
 | 
						|
        .SetDefault(std::vector<int64_t>({}));
 | 
						|
    AddAttr<std::vector<std::string>>(
 | 
						|
        "epmap",
 | 
						|
        "(string vector, default 127.0.0.1:6164)"
 | 
						|
        "Server endpoints in the order of input variables for mapping")
 | 
						|
        .SetDefault({});
 | 
						|
    AddAttr<std::vector<std::string>>(
 | 
						|
        "table_names",
 | 
						|
        "(string vector, the split table names that will be fetched from "
 | 
						|
        "parameter server)"
 | 
						|
        "in the order of input variables for mapping")
 | 
						|
        .SetDefault({});
 | 
						|
    AddComment(R"DOC(
 | 
						|
The hierarchical sigmoid operator organize the classes into a binary tree.
 | 
						|
At each node, a sigmoid function is used to calculate the probability of
 | 
						|
belonging to the right branch. This idea is from
 | 
						|
"F. Morin, Y. Bengio (AISTATS 05):
 | 
						|
Hierarchical Probabilistic Neural Network Language Model."
 | 
						|
      )DOC");
 | 
						|
    AddAttr<bool>("is_sparse",
 | 
						|
                  "(boolean, default false) "
 | 
						|
                  "Sparse update.")
 | 
						|
        .SetDefault(false);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Inputs: X, W, Label, PathTable, PathCode, PreOut, Out@GRAD
 | 
						|
 * Outputs: X@GRAD, W@GRAD, Bias@GRAD
 | 
						|
 */
 | 
						|
template <typename T>
 | 
						|
class HierarchicalSigmoidGradMaker : public framework::SingleGradOpMaker<T> {
 | 
						|
 public:
 | 
						|
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
 | 
						|
 | 
						|
  void Apply(GradOpPtr<T> op) const override {
 | 
						|
    op->SetType(this->ForwardOpType() + "_grad");
 | 
						|
    // Inputs: X, W, Label, PathTable, PathCode, PreOut, Out@GRAD
 | 
						|
    op->SetInput("X", this->Input("X"));
 | 
						|
    op->SetInput("W", this->Input("W"));
 | 
						|
    op->SetInput("Bias", this->Input("Bias"));
 | 
						|
    op->SetInput("Label", this->Input("Label"));
 | 
						|
    op->SetInput("PathTable", this->Input("PathTable"));
 | 
						|
    op->SetInput("PathCode", this->Input("PathCode"));
 | 
						|
    op->SetInput("PreOut", this->Output("PreOut"));
 | 
						|
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
 | 
						|
 | 
						|
    // Outputs: X@GRAD, W@GRAD, Bias@GRAD
 | 
						|
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
 | 
						|
    op->SetOutput(framework::GradVarName("W"), this->InputGrad("W"));
 | 
						|
    op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
 | 
						|
    op->SetAttrMap(this->Attrs());
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class HierarchicalSigmoidGradOp : public framework::OperatorWithKernel {
 | 
						|
 public:
 | 
						|
  using framework::OperatorWithKernel::OperatorWithKernel;
 | 
						|
  void InferShape(framework::InferShapeContext* ctx) const override {
 | 
						|
    OP_INOUT_CHECK(ctx->HasInput("W"), "Input", "W", "hsigmoid_grad");
 | 
						|
    OP_INOUT_CHECK(ctx->HasInput("Label"), "Input", "Label", "hsigmoid_grad");
 | 
						|
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
 | 
						|
                   "Out@Grad", "hsigmoid_grad");
 | 
						|
    OP_INOUT_CHECK(ctx->HasInput("PreOut"), "Input", "PreOut", "hsigmoid_grad");
 | 
						|
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("W")), "Output",
 | 
						|
                   "W@Grad", "hsigmoid_grad");
 | 
						|
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
 | 
						|
                   "X@Grad", "hsigmoid_grad");
 | 
						|
 | 
						|
    if (ctx->HasOutput(framework::GradVarName("Bias"))) {
 | 
						|
      ctx->SetOutputDim(framework::GradVarName("Bias"),
 | 
						|
                        ctx->GetInputDim("Bias"));
 | 
						|
    }
 | 
						|
    ctx->SetOutputDim(framework::GradVarName("W"), ctx->GetInputDim("W"));
 | 
						|
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
 | 
						|
    ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
 | 
						|
  }
 | 
						|
 | 
						|
 protected:
 | 
						|
  framework::OpKernelType GetExpectedKernelType(
 | 
						|
      const framework::ExecutionContext& ctx) const override {
 | 
						|
    return framework::OpKernelType(
 | 
						|
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class HierarchicalSigmoidGradOpGradVarTypeInference
 | 
						|
    : public framework::VarTypeInference {
 | 
						|
 public:
 | 
						|
  void operator()(framework::InferVarTypeContext* ctx) const override {
 | 
						|
    auto w_grad_var_name = framework::GradVarName("W");
 | 
						|
    auto bias_grad_var_name = framework::GradVarName("Bias");
 | 
						|
    if (ctx->HasOutput(bias_grad_var_name)) {
 | 
						|
      VLOG(3) << "hierarchical_sigmoid_grad op "
 | 
						|
              << framework::GradVarName("Bias") << " is set to LoDTensor";
 | 
						|
      ctx->SetOutputType(bias_grad_var_name,
 | 
						|
                         framework::proto::VarType::LOD_TENSOR);
 | 
						|
    }
 | 
						|
 | 
						|
    auto attr = ctx->GetAttr("is_sparse");
 | 
						|
    bool is_sparse = BOOST_GET(bool, attr);
 | 
						|
    if (is_sparse) {
 | 
						|
      VLOG(3) << "hierarchical_sigmoid_grad op " << framework::GradVarName("W")
 | 
						|
              << " is set to SelectedRows";
 | 
						|
      ctx->SetOutputType(w_grad_var_name,
 | 
						|
                         framework::proto::VarType::SELECTED_ROWS);
 | 
						|
    } else {
 | 
						|
      VLOG(3) << "hierarchical_sigmoid_grad op " << framework::GradVarName("W")
 | 
						|
              << " is set to LoDTensor";
 | 
						|
      ctx->SetOutputType(w_grad_var_name,
 | 
						|
                         framework::proto::VarType::LOD_TENSOR);
 | 
						|
    }
 | 
						|
 | 
						|
    ctx->SetOutputDataType(w_grad_var_name, ctx->GetInputDataType("W"));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
DECLARE_NO_NEED_BUFFER_VARS_INFERER(
 | 
						|
    HierarchicalSigmoidGradOpNoNeedBufferVarInferer, "Bias");
 | 
						|
 | 
						|
}  // namespace operators
 | 
						|
}  // namespace paddle
 | 
						|
 | 
						|
namespace ops = paddle::operators;
 | 
						|
REGISTER_OPERATOR(
 | 
						|
    hierarchical_sigmoid, ops::HierarchicalSigmoidOp,
 | 
						|
    ops::HierarchicalSigmoidOpMaker<int>,
 | 
						|
    ops::HierarchicalSigmoidGradMaker<paddle::framework::OpDesc>,
 | 
						|
    ops::HierarchicalSigmoidGradMaker<paddle::imperative::OpBase>);
 | 
						|
REGISTER_OPERATOR(hierarchical_sigmoid_grad, ops::HierarchicalSigmoidGradOp,
 | 
						|
                  ops::HierarchicalSigmoidGradOpGradVarTypeInference,
 | 
						|
                  ops::HierarchicalSigmoidGradOpNoNeedBufferVarInferer);
 | 
						|
REGISTER_OP_CPU_KERNEL(
 | 
						|
    hierarchical_sigmoid,
 | 
						|
    ops::HierarchicalSigmoidOpKernel<paddle::platform::CPUDeviceContext, float>,
 | 
						|
    ops::HierarchicalSigmoidOpKernel<paddle::platform::CPUDeviceContext,
 | 
						|
                                     double>);
 | 
						|
REGISTER_OP_CPU_KERNEL(
 | 
						|
    hierarchical_sigmoid_grad,
 | 
						|
    ops::HierarchicalSigmoidGradOpKernel<paddle::platform::CPUDeviceContext,
 | 
						|
                                         float>,
 | 
						|
    ops::HierarchicalSigmoidGradOpKernel<paddle::platform::CPUDeviceContext,
 | 
						|
                                         double>);
 |