You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							99 lines
						
					
					
						
							3.3 KiB
						
					
					
				
			
		
		
	
	
							99 lines
						
					
					
						
							3.3 KiB
						
					
					
				| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include "paddle/fluid/framework/eigen.h"
 | |
| #include "paddle/fluid/framework/op_registry.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| template <typename T>
 | |
| struct ReLU {
 | |
|   HOSTDEVICE T operator()(const T& val) const {
 | |
|     return val > 0 ? val : static_cast<T>(0);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| struct Heaviside {
 | |
|   HOSTDEVICE T operator()(const T& val) const {
 | |
|     return static_cast<T>(val > 0 ? 1 : 0);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename DeviceContext, typename T>
 | |
| class MarginRankLossKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& ctx) const {
 | |
|     auto* out_t = ctx.Output<framework::Tensor>("Out");
 | |
|     auto* act_t = ctx.Output<framework::Tensor>("Activated");
 | |
| 
 | |
|     auto* label_t = ctx.Input<framework::Tensor>("Label");
 | |
|     auto* x1_t = ctx.Input<framework::Tensor>("X1");
 | |
|     auto* x2_t = ctx.Input<framework::Tensor>("X2");
 | |
| 
 | |
|     out_t->mutable_data<T>(ctx.GetPlace());
 | |
|     act_t->mutable_data<T>(ctx.GetPlace());
 | |
| 
 | |
|     auto margin = static_cast<T>(ctx.Attr<T>("margin"));
 | |
|     auto out = framework::EigenVector<T>::Flatten(*out_t);
 | |
|     auto act = framework::EigenVector<T>::Flatten(*act_t);
 | |
| 
 | |
|     auto label = framework::EigenVector<T>::Flatten(*label_t);
 | |
|     auto x1 = framework::EigenVector<T>::Flatten(*x1_t);
 | |
|     auto x2 = framework::EigenVector<T>::Flatten(*x2_t);
 | |
| 
 | |
|     auto& dev = *ctx.template device_context<DeviceContext>().eigen_device();
 | |
|     out.device(dev) = (-label * (x1 - x2) + margin).unaryExpr(ReLU<T>());
 | |
|     act.device(dev) = out.unaryExpr(Heaviside<T>());
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename DeviceContext, typename T>
 | |
| class MarginRankLossGradKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& ctx) const {
 | |
|     auto* d_x1_t =
 | |
|         ctx.Output<framework::LoDTensor>(framework::GradVarName("X1"));
 | |
|     auto* d_x2_t =
 | |
|         ctx.Output<framework::LoDTensor>(framework::GradVarName("X2"));
 | |
| 
 | |
|     auto* act_t = ctx.Input<framework::Tensor>("Activated");
 | |
|     auto* d_out_t = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
 | |
|     auto* label_t = ctx.Input<framework::Tensor>("Label");
 | |
| 
 | |
|     auto d_out = framework::EigenVector<T>::Flatten(*d_out_t);
 | |
|     auto act = framework::EigenVector<T>::Flatten(*act_t);
 | |
|     auto label = framework::EigenVector<T>::Flatten(*label_t);
 | |
|     auto& dev = *ctx.template device_context<DeviceContext>().eigen_device();
 | |
| 
 | |
|     // compute d_x1
 | |
|     if (d_x1_t) {
 | |
|       d_x1_t->mutable_data<T>(ctx.GetPlace());
 | |
|       auto d_x1 = framework::EigenVector<T>::Flatten(*d_x1_t);
 | |
|       d_x1.device(dev) = -d_out * act * label;
 | |
|     }
 | |
|     // compute d_x2
 | |
|     if (d_x2_t) {
 | |
|       d_x2_t->mutable_data<T>(ctx.GetPlace());
 | |
|       auto d_x2 = framework::EigenVector<T>::Flatten(*d_x2_t);
 | |
|       d_x2.device(dev) = d_out * act * label;
 | |
|     }
 | |
|   }
 | |
| };
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 |