You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							119 lines
						
					
					
						
							4.3 KiB
						
					
					
				
			
		
		
	
	
							119 lines
						
					
					
						
							4.3 KiB
						
					
					
				| /* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| #include "paddle/fluid/operators/multinomial_op.h"
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| #include "paddle/fluid/framework/generator.h"
 | |
| #include "paddle/fluid/framework/op_registry.h"
 | |
| #include "paddle/fluid/framework/operator.h"
 | |
| #include "paddle/fluid/operators/common_infer_shape_functions.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| class MultinomialOpMaker : public framework::OpProtoAndCheckerMaker {
 | |
|  public:
 | |
|   void Make() override {
 | |
|     AddInput("X", "A tensor contains probabilities of categories");
 | |
|     AddOutput("Out", "The output tensor of multinomial op");
 | |
|     AddAttr<int>("num_samples", "number of the generated samples")
 | |
|         .SetDefault(1);
 | |
|     AddAttr<bool>("replacement", "can a category be sampled more than once")
 | |
|         .SetDefault(false);
 | |
|     AddComment(R"DOC(
 | |
| This OP returns a Tensor filled with the sampled categoris according to Multinomial probabilities.
 | |
| 
 | |
|       Out ~ Multinomial(X)
 | |
| 
 | |
| )DOC");
 | |
|   }
 | |
| };
 | |
| 
 | |
| class MultinomialOp : public framework::OperatorWithKernel {
 | |
|  public:
 | |
|   using framework::OperatorWithKernel::OperatorWithKernel;
 | |
| 
 | |
|   void InferShape(framework::InferShapeContext *ctx) const override {
 | |
|     OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Multinomial");
 | |
|     OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Multinomial");
 | |
| 
 | |
|     auto x_dim = ctx->GetInputDim("X");
 | |
|     int64_t x_rank = x_dim.size();
 | |
|     PADDLE_ENFORCE_GT(x_rank, 0,
 | |
|                       platform::errors::InvalidArgument(
 | |
|                           "The number of dimensions of the input probability "
 | |
|                           "distribution should be > 0, but got %d.",
 | |
|                           x_rank));
 | |
|     PADDLE_ENFORCE_LE(x_rank, 2,
 | |
|                       platform::errors::InvalidArgument(
 | |
|                           "The number of dimensions of the input probability "
 | |
|                           "distribution should be <= 2, but got %d.",
 | |
|                           x_rank));
 | |
| 
 | |
|     std::vector<int64_t> out_dims(x_rank);
 | |
|     for (int64_t i = 0; i < x_rank - 1; i++) {
 | |
|       out_dims[i] = x_dim[i];
 | |
|     }
 | |
| 
 | |
|     int64_t num_samples = ctx->Attrs().Get<int>("num_samples");
 | |
|     PADDLE_ENFORCE_GT(
 | |
|         num_samples, 0,
 | |
|         platform::errors::InvalidArgument(
 | |
|             "The number of samples should be > 0, but got %d.", num_samples));
 | |
|     out_dims[x_rank - 1] = num_samples;
 | |
| 
 | |
|     ctx->SetOutputDim("Out", framework::make_ddim(out_dims));
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| class MultinomialOpKernel<platform::CPUDeviceContext, T>
 | |
|     : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext &ctx) const override {
 | |
|     const auto x = ctx.Input<framework::Tensor>("X");
 | |
|     auto out = ctx.Output<framework::Tensor>("Out");
 | |
|     const int64_t num_samples = ctx.Attr<int>("num_samples");
 | |
|     const bool replacement = ctx.Attr<bool>("replacement");
 | |
| 
 | |
|     auto *in_data = x->data<T>();
 | |
|     int64_t *out_data = out->mutable_data<int64_t>(ctx.GetPlace());
 | |
| 
 | |
|     auto in_dims = x->dims();
 | |
|     int64_t in_rank = in_dims.size();
 | |
|     const int64_t num_categories = in_dims[in_rank - 1];
 | |
|     const int64_t num_distributions = in_rank > 1 ? in_dims[in_rank - 2] : 1;
 | |
| 
 | |
|     MultinomialFunctor<T>(out_data, in_data, num_samples, replacement,
 | |
|                           num_categories, num_distributions);
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 | |
| 
 | |
| namespace ops = paddle::operators;
 | |
| namespace plat = paddle::platform;
 | |
| REGISTER_OPERATOR(
 | |
|     multinomial, ops::MultinomialOp, ops::MultinomialOpMaker,
 | |
|     paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
 | |
|     paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
 | |
| 
 | |
| REGISTER_OP_CPU_KERNEL(
 | |
|     multinomial, ops::MultinomialOpKernel<plat::CPUDeviceContext, float>,
 | |
|     ops::MultinomialOpKernel<plat::CPUDeviceContext, double>);
 |