You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							166 lines
						
					
					
						
							6.2 KiB
						
					
					
				
			
		
		
	
	
							166 lines
						
					
					
						
							6.2 KiB
						
					
					
				| // Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "paddle/fluid/operators/stack_op.h"
 | |
| #include <memory>
 | |
| #include <vector>
 | |
| 
 | |
| namespace plat = paddle::platform;
 | |
| namespace ops = paddle::operators;
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| class StackOp : public framework::OperatorWithKernel {
 | |
|  public:
 | |
|   using framework::OperatorWithKernel::OperatorWithKernel;
 | |
| 
 | |
|   void InferShape(framework::InferShapeContext *ctx) const override {
 | |
|     PADDLE_ENFORCE_GT(ctx->Inputs("X").size(), 0,
 | |
|                       platform::errors::InvalidArgument(
 | |
|                           "Number of Inputs(X) must be larger than 0, but"
 | |
|                           " received value is:%d.",
 | |
|                           ctx->Inputs("X").size()));
 | |
|     PADDLE_ENFORCE_EQ(ctx->HasOutput("Y"), true,
 | |
|                       platform::errors::InvalidArgument(
 | |
|                           "Output(Y) of stack_op should not be null."));
 | |
| 
 | |
|     auto input_dims = ctx->GetInputsDim("X");
 | |
|     for (size_t i = 1; i < input_dims.size(); ++i) {
 | |
|       PADDLE_ENFORCE_EQ(input_dims[i], input_dims[0],
 | |
|                         platform::errors::InvalidArgument(
 | |
|                             "Dims of all Inputs(X) must be the same, but"
 | |
|                             " received input %d dim is:%d not equal to input 0"
 | |
|                             " dim:%d.",
 | |
|                             i, input_dims[i], input_dims[0]));
 | |
|     }
 | |
| 
 | |
|     // Only lod of X[0] would be shared with Y
 | |
|     ctx->ShareLoD("X", /*->*/ "Y");
 | |
| 
 | |
|     int axis = ctx->Attrs().Get<int>("axis");
 | |
|     int rank = input_dims[0].size();
 | |
|     PADDLE_ENFORCE_GE(
 | |
|         axis, -(rank + 1),
 | |
|         platform::errors::InvalidArgument(
 | |
|             "Attr(axis) must be inside [-(rank+1), rank+1), where rank = %d, "
 | |
|             "but received axis is:%d.",
 | |
|             rank, axis));
 | |
| 
 | |
|     PADDLE_ENFORCE_LT(
 | |
|         axis, rank + 1,
 | |
|         platform::errors::InvalidArgument(
 | |
|             "Attr(axis) must be inside [-(rank+1), rank+1), where rank = %d, "
 | |
|             "but received axis is:%d",
 | |
|             rank, axis));
 | |
| 
 | |
|     if (axis < 0) axis += (rank + 1);
 | |
| 
 | |
|     auto vec = framework::vectorize<int>(input_dims[0]);
 | |
|     vec.insert(vec.begin() + axis, input_dims.size());
 | |
|     ctx->SetOutputDim("Y", framework::make_ddim(vec));
 | |
|   }
 | |
| };
 | |
| 
 | |
| class StackOpMaker : public framework::OpProtoAndCheckerMaker {
 | |
|  public:
 | |
|   void Make() override {
 | |
|     AddInput("X", "The input of stack op.").AsDuplicable();
 | |
|     AddOutput("Y", "The output of stack op.");
 | |
|     AddAttr<int>("axis",
 | |
|                  "The axis along which all of the Inputs(X) should be stacked.")
 | |
|         .SetDefault(0);
 | |
|     AddComment(R"DOC(
 | |
| Stack Operator.
 | |
| Stack all of the Inputs(X) into one tensor along Attr(axis). The dims of all Inputs(X) must be the same.
 | |
| )DOC");
 | |
|   }
 | |
| };
 | |
| 
 | |
| class StackOpGrad : public framework::OperatorWithKernel {
 | |
|  public:
 | |
|   using framework::OperatorWithKernel::OperatorWithKernel;
 | |
| 
 | |
|   void InferShape(framework::InferShapeContext *ctx) const override {
 | |
|     PADDLE_ENFORCE_EQ(
 | |
|         ctx->HasInput(framework::GradVarName("Y")), true,
 | |
|         platform::errors::InvalidArgument("Input(Y@Grad) not exist."));
 | |
| 
 | |
|     int axis = ctx->Attrs().Get<int>("axis");
 | |
|     auto dy_dim = ctx->GetInputDim(framework::GradVarName("Y"));
 | |
|     int rank = dy_dim.size();
 | |
|     PADDLE_ENFORCE_GE(
 | |
|         axis, -rank,
 | |
|         platform::errors::InvalidArgument(
 | |
|             "Attr(axis) must be inside [-rank, rank), where rank = %d, "
 | |
|             "but received axis is:%d.",
 | |
|             rank, axis));
 | |
|     PADDLE_ENFORCE_LT(
 | |
|         axis, rank,
 | |
|         platform::errors::InvalidArgument(
 | |
|             "Attr(axis) must be inside [-rank, rank), where rank = %d, "
 | |
|             "but received axis is:%d.",
 | |
|             rank, axis));
 | |
| 
 | |
|     if (axis < 0) axis += rank;
 | |
|     PADDLE_ENFORCE_EQ(
 | |
|         ctx->Outputs(framework::GradVarName("X")).size(),
 | |
|         static_cast<size_t>(dy_dim[axis]),
 | |
|         platform::errors::InvalidArgument(
 | |
|             "Number of Outputs(X@Grad) is equal to dy dim at axis, but"
 | |
|             " received outputs size is:%d, dy dims is:%d.",
 | |
|             ctx->Outputs(framework::GradVarName("X")).size(),
 | |
|             static_cast<size_t>(dy_dim[axis])));
 | |
| 
 | |
|     auto vec = framework::vectorize<int>(dy_dim);
 | |
|     vec.erase(vec.begin() + axis);
 | |
|     ctx->SetOutputsDim(
 | |
|         framework::GradVarName("X"),
 | |
|         std::vector<framework::DDim>(dy_dim[axis], framework::make_ddim(vec)));
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| class StackGradOpMaker : public framework::SingleGradOpMaker<T> {
 | |
|  public:
 | |
|   using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
 | |
| 
 | |
|  protected:
 | |
|   void Apply(GradOpPtr<T> op) const override {
 | |
|     op->SetType("stack_grad");
 | |
|     op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));
 | |
|     op->SetOutput(framework::GradVarName("X"), this->InputGrad("X", false));
 | |
|     op->SetAttrMap(this->Attrs());
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 | |
| 
 | |
| REGISTER_OPERATOR(stack, ops::StackOp, ops::StackOpMaker,
 | |
|                   ops::StackGradOpMaker<paddle::framework::OpDesc>,
 | |
|                   ops::StackGradOpMaker<paddle::imperative::OpBase>);
 | |
| REGISTER_OPERATOR(stack_grad, ops::StackOpGrad);
 | |
| 
 | |
| REGISTER_OP_CPU_KERNEL(stack, ops::StackKernel<plat::CPUDeviceContext, float>,
 | |
|                        ops::StackKernel<plat::CPUDeviceContext, double>,
 | |
|                        ops::StackKernel<plat::CPUDeviceContext, int>,
 | |
|                        ops::StackKernel<plat::CPUDeviceContext, int64_t>);
 | |
| 
 | |
| REGISTER_OP_CPU_KERNEL(stack_grad,
 | |
|                        ops::StackGradKernel<plat::CPUDeviceContext, float>,
 | |
|                        ops::StackGradKernel<plat::CPUDeviceContext, double>,
 | |
|                        ops::StackGradKernel<plat::CPUDeviceContext, int>,
 | |
|                        ops::StackGradKernel<plat::CPUDeviceContext, int64_t>);
 |