You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							330 lines
						
					
					
						
							14 KiB
						
					
					
				
			
		
		
	
	
							330 lines
						
					
					
						
							14 KiB
						
					
					
				| /* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
|  Licensed under the Apache License, Version 2.0 (the "License");
 | |
|  you may not use this file except in compliance with the License.
 | |
|  You may obtain a copy of the License at
 | |
| 
 | |
|      http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
|  Unless required by applicable law or agreed to in writing, software
 | |
|  distributed under the License is distributed on an "AS IS" BASIS,
 | |
|  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  See the License for the specific language governing permissions and
 | |
|  limitations under the License. */
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <cmath>
 | |
| #include <fstream>
 | |
| #include <set>
 | |
| #include <string>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| #include "gflags/gflags.h"
 | |
| #include "paddle/fluid/framework/mixed_vector.h"
 | |
| #include "paddle/fluid/framework/op_registry.h"
 | |
| #include "paddle/fluid/operators/math/sampler.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| using Tensor = framework::Tensor;
 | |
| using Sampler = math::Sampler;
 | |
| using DDim = framework::DDim;
 | |
| using LoD = framework::LoD;
 | |
| using LoDTensor = framework::LoDTensor;
 | |
| using LoDAndOffset = std::pair<LoD, std::pair<size_t, size_t>>;
 | |
| 
 | |
| template <typename T, typename TreeT = int, typename OutT = int>
 | |
| void TDMSamplerInner(const framework::ExecutionContext &context,
 | |
|                      const LoDTensor &input_tensor,
 | |
|                      const LoDTensor &travel_lod_tensor,
 | |
|                      const LoDTensor &layer_lod_tensor, LoDTensor *out_tensor,
 | |
|                      LoDTensor *label_tensor, LoDTensor *mask_tensor) {
 | |
|   auto neg_samples_num_vec =
 | |
|       context.Attr<std::vector<int>>("neg_samples_num_list");
 | |
|   auto layer_offset_lod = context.Attr<std::vector<int>>("layer_offset_lod");
 | |
|   auto output_positive_flag = context.Attr<bool>("output_positive");
 | |
| 
 | |
|   // get dimension
 | |
|   int input_ids_num = input_tensor.numel();
 | |
|   VLOG(3) << "TDM: input ids nums: " << input_ids_num;
 | |
|   auto layer_nums = neg_samples_num_vec.size();
 | |
|   VLOG(3) << "TDM: tree layer nums: " << layer_nums;
 | |
| 
 | |
|   int sample_res_length = 0;
 | |
|   for (size_t layer_idx = 0; layer_idx < layer_nums; ++layer_idx) {
 | |
|     sample_res_length += (neg_samples_num_vec[layer_idx] +
 | |
|                           static_cast<int>(output_positive_flag));
 | |
|   }
 | |
|   VLOG(3) << "TDM: sample res length: " << sample_res_length;
 | |
| 
 | |
|   auto travel_dim = travel_lod_tensor.dims();
 | |
|   auto total_sample_nums = input_ids_num * sample_res_length;
 | |
| 
 | |
|   // get all data
 | |
|   auto *input_data = input_tensor.data<T>();
 | |
|   auto *travel_data = travel_lod_tensor.data<TreeT>();
 | |
|   auto *layer_data = layer_lod_tensor.data<TreeT>();
 | |
| 
 | |
|   OutT zero = 0;
 | |
|   OutT one = 1;
 | |
|   std::vector<OutT> output_vec(total_sample_nums, zero);
 | |
|   std::vector<OutT> label_vec(total_sample_nums, zero);
 | |
|   std::vector<OutT> mask_vec(total_sample_nums, one);
 | |
| 
 | |
|   VLOG(3) << "End get input & output data";
 | |
|   // generate uniform sampler
 | |
| 
 | |
|   auto seed = context.Attr<int>("seed");
 | |
|   std::vector<Sampler *> sampler_vec{};
 | |
|   for (size_t layer_index = 0; layer_index < layer_nums; layer_index++) {
 | |
|     int layer_node_nums =
 | |
|         layer_offset_lod[layer_index + 1] - layer_offset_lod[layer_index];
 | |
|     Sampler *sampler = new math::UniformSampler(layer_node_nums - 1, seed);
 | |
|     sampler_vec.push_back(sampler);
 | |
|   }
 | |
|   VLOG(3) << "TDM: get sampler ";
 | |
| 
 | |
|   for (int i = 0; i < input_ids_num; ++i) {
 | |
|     // find leaf node travel path
 | |
|     T input_id = input_data[i];
 | |
|     PADDLE_ENFORCE_LT(
 | |
|         -1, input_id,
 | |
|         platform::errors::InvalidArgument(
 | |
|             "Variable value (input) of OP(fluid.layers.tdm_sampler) "
 | |
|             "expected >= 0 and < %ld, but got %ld. Please check input "
 | |
|             "value.",
 | |
|             travel_dim[0], input_id));
 | |
|     PADDLE_ENFORCE_LT(
 | |
|         input_id, travel_dim[0],
 | |
|         platform::errors::InvalidArgument(
 | |
|             "Variable value (input) of OP(fluid.layers.tdm_sampler) "
 | |
|             "expected >= 0 and < %ld, but got %ld. Please check input "
 | |
|             "value.",
 | |
|             travel_dim[0], input_id));
 | |
| 
 | |
|     VLOG(3) << "TDM: input id: " << input_id;
 | |
|     int start_offset = static_cast<int>(input_id * layer_nums);
 | |
|     VLOG(3) << "TDM: Start offset(input_id * layer_nums): " << start_offset;
 | |
|     // nce sample, layer by layer
 | |
|     int offset = 0;
 | |
|     for (size_t layer_idx = 0; layer_idx < layer_nums; ++layer_idx) {
 | |
|       int sample_num = neg_samples_num_vec[layer_idx];
 | |
|       VLOG(3) << "TDM: Sample num: " << sample_num;
 | |
| 
 | |
|       int node_nums =
 | |
|           layer_offset_lod[layer_idx + 1] - layer_offset_lod[layer_idx];
 | |
|       VLOG(3) << "TDM: layer - " << layer_idx + 1
 | |
|               << " - has node_nums: " << node_nums;
 | |
| 
 | |
|       PADDLE_ENFORCE_LE(
 | |
|           sample_num, node_nums - 1,
 | |
|           platform::errors::InvalidArgument(
 | |
|               "Neg sample nums id of OP(fluid.layers.tdm_sampler) at layer %ld "
 | |
|               "expected <= %ld - 1 (positive included), but got %ld. Please "
 | |
|               "check neg_samples_num_list.",
 | |
|               layer_idx, node_nums, sample_num));
 | |
| 
 | |
|       int node_id_min = layer_offset_lod[layer_idx];
 | |
|       int node_id_max = layer_offset_lod[layer_idx + 1];
 | |
| 
 | |
|       OutT positive_node_id =
 | |
|           static_cast<OutT>(travel_data[start_offset + layer_idx]);
 | |
| 
 | |
|       if (positive_node_id == 0) {
 | |
|         // skip padding
 | |
|         VLOG(3) << "TDM: Skip padding ";
 | |
|         for (int sample_index = 0;
 | |
|              sample_index < sample_num + static_cast<int>(output_positive_flag);
 | |
|              sample_index++) {
 | |
|           output_vec[i * sample_res_length + offset] = 0;
 | |
|           label_vec[i * sample_res_length + offset] = 0;
 | |
|           mask_vec[i * sample_res_length + offset] = 0;
 | |
|           VLOG(3) << "TDM: Res append positive "
 | |
|                   << output_vec[i * sample_res_length + offset]
 | |
|                   << " Label append positive "
 | |
|                   << label_vec[i * sample_res_length + offset]
 | |
|                   << " Mask append value "
 | |
|                   << mask_vec[i * sample_res_length + offset];
 | |
|           offset += 1;
 | |
|         }
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       PADDLE_ENFORCE_LE(
 | |
|           positive_node_id, node_id_max,
 | |
|           platform::errors::InvalidArgument(
 | |
|               "Positive node id of OP(fluid.layers.tdm_sampler) at layer %ld "
 | |
|               "expected >= %ld and <= %ld, but got %ld. Please check input "
 | |
|               "value.",
 | |
|               layer_idx, node_id_min, node_id_max, positive_node_id));
 | |
|       PADDLE_ENFORCE_LE(
 | |
|           node_id_min, positive_node_id,
 | |
|           platform::errors::InvalidArgument(
 | |
|               "Positive node id of OP(fluid.layers.tdm_sampler) at layer %ld "
 | |
|               "expected >= %ld and <= %ld, but got %ld. Please check input "
 | |
|               "value.",
 | |
|               layer_idx, node_id_min, node_id_max, positive_node_id));
 | |
| 
 | |
|       // If output positive, add itself
 | |
|       if (output_positive_flag) {
 | |
|         output_vec[i * sample_res_length + offset] = positive_node_id;
 | |
|         label_vec[i * sample_res_length + offset] = 1;
 | |
|         mask_vec[i * sample_res_length + offset] = 1;
 | |
|         VLOG(3) << "TDM: node id: " << positive_node_id << " Res append  "
 | |
|                 << output_vec[i * sample_res_length + offset]
 | |
|                 << " Label append  "
 | |
|                 << label_vec[i * sample_res_length + offset] << " Mask append  "
 | |
|                 << mask_vec[i * sample_res_length + offset];
 | |
|         offset += 1;
 | |
|       }
 | |
|       std::vector<int> sample_res_vec{};
 | |
|       // Sampling at layer, until samples enough
 | |
|       for (int sample_index = 0; sample_index < sample_num; ++sample_index) {
 | |
|         // Avoid sampling to positive samples
 | |
|         int sample_res = 0;
 | |
|         do {
 | |
|           sample_res = sampler_vec[layer_idx]->Sample();
 | |
|         } while (positive_node_id ==
 | |
|                      layer_data[layer_offset_lod[layer_idx] + sample_res] ||
 | |
|                  find(sample_res_vec.begin(), sample_res_vec.end(),
 | |
|                       sample_res) != sample_res_vec.end());
 | |
|         sample_res_vec.push_back(sample_res);
 | |
| 
 | |
|         output_vec[i * sample_res_length + offset] = static_cast<OutT>(
 | |
|             layer_data[layer_offset_lod[layer_idx] + sample_res]);
 | |
|         label_vec[i * sample_res_length + offset] = 0;
 | |
|         mask_vec[i * sample_res_length + offset] = 1;
 | |
|         VLOG(3) << "TDM: node id: " << travel_data[start_offset + layer_idx]
 | |
|                 << " Res append negitive "
 | |
|                 << output_vec[i * sample_res_length + offset]
 | |
|                 << " Label append negitive "
 | |
|                 << label_vec[i * sample_res_length + offset]
 | |
|                 << " Mask append value "
 | |
|                 << mask_vec[i * sample_res_length + offset];
 | |
| 
 | |
|         PADDLE_ENFORCE_LE(
 | |
|             layer_data[layer_offset_lod[layer_idx] + sample_res], node_id_max,
 | |
|             platform::errors::InvalidArgument(
 | |
|                 "Negative node id of OP(fluid.layers.tdm_sampler) at layer %ld"
 | |
|                 "expected >= %ld and <= %ld, but got %ld. Please check input "
 | |
|                 "tdm tree structure and tdm travel info.",
 | |
|                 layer_idx, node_id_min, node_id_max,
 | |
|                 layer_data[layer_offset_lod[layer_idx] + sample_res]));
 | |
| 
 | |
|         offset += 1;
 | |
|       }  // end layer nce
 | |
|     }    // end one input nce
 | |
|   }      // end all input nce
 | |
| 
 | |
|   auto *output_data = out_tensor->mutable_data<OutT>(context.GetPlace());
 | |
|   auto *label_data = label_tensor->mutable_data<OutT>(context.GetPlace());
 | |
|   auto *mask_data = mask_tensor->mutable_data<OutT>(context.GetPlace());
 | |
| 
 | |
|   memcpy(output_data, &output_vec[0], sizeof(OutT) * total_sample_nums);
 | |
|   memcpy(label_data, &label_vec[0], sizeof(OutT) * total_sample_nums);
 | |
|   memcpy(mask_data, &mask_vec[0], sizeof(OutT) * total_sample_nums);
 | |
| 
 | |
|   for (size_t layer_index = 0; layer_index < layer_nums; layer_index++) {
 | |
|     delete sampler_vec[layer_index];
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename DeviceContext, typename T>
 | |
| class TDMSamplerKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext &context) const override {
 | |
|     auto *input_var = context.InputVar("X");
 | |
|     auto *travel_var = context.InputVar("Travel");
 | |
|     auto *layer_var = context.InputVar("Layer");
 | |
| 
 | |
|     // get all tensor
 | |
|     auto &input_tensor = input_var->Get<framework::LoDTensor>();
 | |
|     auto &travel_lod_tensor = travel_var->Get<framework::LoDTensor>();
 | |
|     auto &layer_lod_tensor = layer_var->Get<framework::LoDTensor>();
 | |
| 
 | |
|     const auto &input_type = input_tensor.type();
 | |
|     bool input_type_match = input_type == framework::proto::VarType::INT32 ||
 | |
|                             input_type == framework::proto::VarType::INT64;
 | |
|     PADDLE_ENFORCE_EQ(input_type_match, true,
 | |
|                       platform::errors::InvalidArgument(
 | |
|                           "Input(X) holds the wrong type, it holds %s, but "
 | |
|                           "desires to be %s or %s",
 | |
|                           paddle::framework::DataTypeToString(input_type),
 | |
|                           paddle::framework::DataTypeToString(
 | |
|                               framework::proto::VarType::INT32),
 | |
|                           paddle::framework::DataTypeToString(
 | |
|                               framework::proto::VarType::INT64)));
 | |
| 
 | |
|     const auto &travel_type = travel_lod_tensor.type();
 | |
|     bool travel_type_match = travel_type == framework::proto::VarType::INT32 ||
 | |
|                              travel_type == framework::proto::VarType::INT64;
 | |
|     PADDLE_ENFORCE_EQ(
 | |
|         travel_type_match, true,
 | |
|         platform::errors::InvalidArgument(
 | |
|             "Input(Travel) holds the wrong type, it holds %s, but "
 | |
|             "desires to be %s or %s",
 | |
|             paddle::framework::DataTypeToString(travel_type),
 | |
|             paddle::framework::DataTypeToString(
 | |
|                 framework::proto::VarType::INT32),
 | |
|             paddle::framework::DataTypeToString(
 | |
|                 framework::proto::VarType::INT64)));
 | |
| 
 | |
|     const auto &layer_type = layer_lod_tensor.type();
 | |
|     bool layer_type_match = layer_type == framework::proto::VarType::INT32 ||
 | |
|                             layer_type == framework::proto::VarType::INT64;
 | |
|     PADDLE_ENFORCE_EQ(layer_type_match, true,
 | |
|                       platform::errors::InvalidArgument(
 | |
|                           "Input(Layer) holds the wrong type, it holds %s, but "
 | |
|                           "desires to be %s or %s",
 | |
|                           paddle::framework::DataTypeToString(layer_type),
 | |
|                           paddle::framework::DataTypeToString(
 | |
|                               framework::proto::VarType::INT32),
 | |
|                           paddle::framework::DataTypeToString(
 | |
|                               framework::proto::VarType::INT64)));
 | |
|     PADDLE_ENFORCE_EQ(
 | |
|         travel_type, layer_type,
 | |
|         platform::errors::InvalidArgument(
 | |
|             "Input(Travel) must holds the same type with "
 | |
|             "Input(Layer), but Travel holds %s, and Layer holds %s",
 | |
|             paddle::framework::DataTypeToString(travel_type),
 | |
|             paddle::framework::DataTypeToString(layer_type)));
 | |
| 
 | |
|     auto *out_var = context.OutputVar("Out");
 | |
|     auto *label_var = context.OutputVar("Labels");
 | |
|     auto *mask_var = context.OutputVar("Mask");
 | |
|     auto *out_tensor = out_var->GetMutable<framework::LoDTensor>();
 | |
|     auto *label_tensor = label_var->GetMutable<framework::LoDTensor>();
 | |
|     auto *mask_tensor = mask_var->GetMutable<framework::LoDTensor>();
 | |
| 
 | |
|     auto output_type = static_cast<framework::proto::VarType::Type>(
 | |
|         context.Attr<int>("dtype"));
 | |
| 
 | |
|     if (travel_type == framework::proto::VarType::INT32 &&
 | |
|         output_type == framework::proto::VarType::INT32) {
 | |
|       TDMSamplerInner<T, int, int>(context, input_tensor, travel_lod_tensor,
 | |
|                                    layer_lod_tensor, out_tensor, label_tensor,
 | |
|                                    mask_tensor);
 | |
|     } else if (travel_type == framework::proto::VarType::INT64 &&
 | |
|                output_type == framework::proto::VarType::INT32) {
 | |
|       TDMSamplerInner<T, int64_t, int>(context, input_tensor, travel_lod_tensor,
 | |
|                                        layer_lod_tensor, out_tensor,
 | |
|                                        label_tensor, mask_tensor);
 | |
|     } else if (travel_type == framework::proto::VarType::INT32 &&
 | |
|                output_type == framework::proto::VarType::INT64) {
 | |
|       TDMSamplerInner<T, int, int64_t>(context, input_tensor, travel_lod_tensor,
 | |
|                                        layer_lod_tensor, out_tensor,
 | |
|                                        label_tensor, mask_tensor);
 | |
|     } else if (travel_type == framework::proto::VarType::INT64 &&
 | |
|                output_type == framework::proto::VarType::INT64) {
 | |
|       TDMSamplerInner<T, int64_t, int64_t>(
 | |
|           context, input_tensor, travel_lod_tensor, layer_lod_tensor,
 | |
|           out_tensor, label_tensor, mask_tensor);
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 |