You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							129 lines
						
					
					
						
							4.5 KiB
						
					
					
				
			
		
		
	
	
							129 lines
						
					
					
						
							4.5 KiB
						
					
					
				| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #pragma once
 | |
| #include <algorithm>
 | |
| #include <iostream>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| #include "paddle/fluid/framework/eigen.h"
 | |
| #include "paddle/fluid/framework/op_registry.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| using Tensor = framework::Tensor;
 | |
| 
 | |
| template <typename T, int MajorType = Eigen::RowMajor,
 | |
|           typename IndexType = Eigen::DenseIndex>
 | |
| using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
 | |
| 
 | |
| template <typename T, int MajorType = Eigen::RowMajor,
 | |
|           typename IndexType = Eigen::DenseIndex>
 | |
| using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
 | |
| 
 | |
| template <typename DeviceContext, typename T>
 | |
| class TopkKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& ctx) const override {
 | |
|     // Get the top k elements of each row of input tensor
 | |
|     auto* input = ctx.Input<Tensor>("X");
 | |
|     auto* output = ctx.Output<Tensor>("Out");
 | |
|     auto* indices = ctx.Output<Tensor>("Indices");
 | |
| 
 | |
|     size_t k = static_cast<int>(ctx.Attr<int>("k"));
 | |
|     auto* k_t = ctx.Input<Tensor>("K");
 | |
|     if (k_t) {
 | |
|       k = k_t->data<int>()[0];
 | |
|       framework::DDim output_dims = output->dims();
 | |
|       output_dims[output_dims.size() - 1] = k;
 | |
|       output->Resize(output_dims);
 | |
|       indices->Resize(output_dims);
 | |
|     }
 | |
| 
 | |
|     T* output_data = output->mutable_data<T>(ctx.GetPlace());
 | |
|     int64_t* indices_data = indices->mutable_data<int64_t>(ctx.GetPlace());
 | |
| 
 | |
|     // reshape input to a flattern matrix(like flat_inner_dims)
 | |
|     framework::DDim inputdims = input->dims();
 | |
|     const size_t row = framework::product(
 | |
|         framework::slice_ddim(inputdims, 0, inputdims.size() - 1));
 | |
|     const size_t col = inputdims[inputdims.size() - 1];
 | |
|     Eigen::DSizes<int, 2> flat2dims(row, col);
 | |
| // NOTE: eigen shape doesn't affect paddle tensor.
 | |
| #ifdef PADDLE_WITH_MKLML
 | |
| #pragma omp parallel for
 | |
| #endif
 | |
|     for (size_t i = 0; i < row; i++) {
 | |
|       std::vector<std::pair<T, size_t>> vec;
 | |
|       vec.reserve(col);
 | |
|       // 1D vector
 | |
|       if (inputdims.size() == 1) {
 | |
|         auto eg_input = EigenVector<T>::Flatten(*input);
 | |
|         for (size_t j = 0; j < col; j++) {
 | |
|           vec.push_back(std::pair<T, size_t>(eg_input(j), j));
 | |
|         }
 | |
|       } else {
 | |
|         auto eg_input = EigenMatrix<T>::Reshape(*input, inputdims.size() - 1);
 | |
|         for (size_t j = 0; j < col; j++) {
 | |
|           vec.push_back(std::pair<T, size_t>(eg_input(i, j), j));
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       std::partial_sort(
 | |
|           vec.begin(), vec.begin() + k, vec.end(),
 | |
|           [](const std::pair<T, size_t>& l, const std::pair<T, size_t>& r) {
 | |
|             return l.first > r.first;
 | |
|           });
 | |
|       for (size_t j = 0; j < k; j++) {
 | |
|         output_data[i * k + j] = vec[j].first;
 | |
|         indices_data[i * k + j] = int64_t(vec[j].second);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename DeviceContext, typename T>
 | |
| class TopkGradKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& context) const override {
 | |
|     auto* x = context.Input<Tensor>("X");
 | |
|     auto* out_grad = context.Input<Tensor>(framework::GradVarName("Out"));
 | |
|     auto* indices = context.Input<Tensor>("Indices");
 | |
|     auto* x_grad = context.Output<Tensor>(framework::GradVarName("X"));
 | |
| 
 | |
|     T* x_grad_data = x_grad->mutable_data<T>(context.GetPlace());
 | |
|     const T* out_grad_data = out_grad->data<T>();
 | |
|     const int64_t* indices_data = indices->data<int64_t>();
 | |
|     size_t k = indices->dims()[indices->dims().size() - 1];
 | |
| 
 | |
|     framework::DDim xdims = x->dims();
 | |
|     const size_t row =
 | |
|         framework::product(framework::slice_ddim(xdims, 0, xdims.size() - 1));
 | |
|     const size_t col = xdims[xdims.size() - 1];
 | |
| 
 | |
|     memset(x_grad_data, 0, row * col * sizeof(T));
 | |
| 
 | |
|     for (size_t i = 0; i < row; ++i) {
 | |
|       for (size_t j = 0; j < k; ++j) {
 | |
|         size_t idx = indices_data[i * k + j];
 | |
|         x_grad_data[i * col + idx] = out_grad_data[i * k + j];
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 |