You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
106 lines
3.5 KiB
106 lines
3.5 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <gtest/gtest.h>
|
|
#include "gflags/gflags.h"
|
|
#include "paddle/fluid/inference/tests/test_helper.h"
|
|
|
|
DEFINE_string(dirname, "", "Directory of the inference model.");
|
|
|
|
TEST(inference, recognize_digits) {
|
|
if (FLAGS_dirname.empty()) {
|
|
LOG(FATAL) << "Usage: ./example --dirname=path/to/your/model";
|
|
}
|
|
|
|
LOG(INFO) << "FLAGS_dirname: " << FLAGS_dirname << std::endl;
|
|
std::string dirname = FLAGS_dirname;
|
|
|
|
// 0. Call `paddle::framework::InitDevices()` initialize all the devices
|
|
// In unittests, this is done in paddle/testing/paddle_gtest_main.cc
|
|
|
|
int64_t batch_size = 1;
|
|
|
|
paddle::framework::LoDTensor input;
|
|
// Use normilized image pixels as input data,
|
|
// which should be in the range [-1.0, 1.0].
|
|
SetupTensor<float>(input,
|
|
{batch_size, 1, 28, 28},
|
|
static_cast<float>(-1),
|
|
static_cast<float>(1));
|
|
std::vector<paddle::framework::LoDTensor*> cpu_feeds;
|
|
cpu_feeds.push_back(&input);
|
|
|
|
paddle::framework::LoDTensor output1;
|
|
std::vector<paddle::framework::LoDTensor*> cpu_fetchs1;
|
|
cpu_fetchs1.push_back(&output1);
|
|
|
|
// Run inference on CPU
|
|
TestInference<paddle::platform::CPUPlace>(dirname, cpu_feeds, cpu_fetchs1);
|
|
LOG(INFO) << output1.dims();
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
paddle::framework::LoDTensor output2;
|
|
std::vector<paddle::framework::LoDTensor*> cpu_fetchs2;
|
|
cpu_fetchs2.push_back(&output2);
|
|
|
|
// Run inference on CUDA GPU
|
|
TestInference<paddle::platform::CUDAPlace>(dirname, cpu_feeds, cpu_fetchs2);
|
|
LOG(INFO) << output2.dims();
|
|
|
|
CheckError<float>(output1, output2);
|
|
#endif
|
|
}
|
|
|
|
TEST(inference, recognize_digits_combine) {
|
|
if (FLAGS_dirname.empty()) {
|
|
LOG(FATAL) << "Usage: ./example --dirname=path/to/your/model";
|
|
}
|
|
|
|
LOG(INFO) << "FLAGS_dirname: " << FLAGS_dirname << std::endl;
|
|
std::string dirname = FLAGS_dirname;
|
|
|
|
// 0. Call `paddle::framework::InitDevices()` initialize all the devices
|
|
// In unittests, this is done in paddle/testing/paddle_gtest_main.cc
|
|
|
|
paddle::framework::LoDTensor input;
|
|
// Use normilized image pixels as input data,
|
|
// which should be in the range [-1.0, 1.0].
|
|
SetupTensor<float>(
|
|
input, {1, 1, 28, 28}, static_cast<float>(-1), static_cast<float>(1));
|
|
std::vector<paddle::framework::LoDTensor*> cpu_feeds;
|
|
cpu_feeds.push_back(&input);
|
|
|
|
paddle::framework::LoDTensor output1;
|
|
std::vector<paddle::framework::LoDTensor*> cpu_fetchs1;
|
|
cpu_fetchs1.push_back(&output1);
|
|
|
|
// Run inference on CPU
|
|
TestInference<paddle::platform::CPUPlace, true>(
|
|
dirname, cpu_feeds, cpu_fetchs1);
|
|
LOG(INFO) << output1.dims();
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
paddle::framework::LoDTensor output2;
|
|
std::vector<paddle::framework::LoDTensor*> cpu_fetchs2;
|
|
cpu_fetchs2.push_back(&output2);
|
|
|
|
// Run inference on CUDA GPU
|
|
TestInference<paddle::platform::CUDAPlace, true>(
|
|
dirname, cpu_feeds, cpu_fetchs2);
|
|
LOG(INFO) << output2.dims();
|
|
|
|
CheckError<float>(output1, output2);
|
|
#endif
|
|
}
|