You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
342 lines
13 KiB
342 lines
13 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/fused_elemwise_activation_op.h"
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
/*
|
|
* Whether the compound function is Unary(Binary(X, Y)).
|
|
* For Unary(Binary(X, Y)), the intermediate_out's shape is the same the final
|
|
* out.
|
|
*/
|
|
static bool IsUnaryCompound(const std::vector<std::string> &functor_list) {
|
|
PADDLE_ENFORCE_EQ(functor_list.size(), 2);
|
|
static std::unordered_set<std::string> binary_fun = {
|
|
"elementwise_add", "elementwise_mul", "elementwise_add_grad",
|
|
"elementwise_mul_grad"};
|
|
return binary_fun.count(functor_list[1]) != 0;
|
|
}
|
|
|
|
/*
|
|
* Whether the Input(X) could be absent.
|
|
*/
|
|
static bool InputXCanBeAbsent(const std::vector<std::string> &functor_list) {
|
|
PADDLE_ENFORCE_EQ(functor_list.size(), 2);
|
|
static std::unordered_set<std::string> binary_fun = {"elementwise_add_grad"};
|
|
return binary_fun.count(functor_list[0]) != 0 ||
|
|
binary_fun.count(functor_list[1]) != 0;
|
|
}
|
|
|
|
/*
|
|
* Whether the compound function is supported.
|
|
* For Unary(Binary(X, Y)), the intermediate_out's shape is the same the final
|
|
* out.
|
|
*/
|
|
static bool IsSupportedCompound(const std::vector<std::string> &functors) {
|
|
static std::unordered_set<std::string> unary_fun = {"scale", "relu"};
|
|
static std::unordered_set<std::string> binary_fun = {"elementwise_add",
|
|
"elementwise_mul"};
|
|
|
|
std::string unary_fun_str;
|
|
if (binary_fun.count(functors[0])) {
|
|
unary_fun_str = functors[1];
|
|
} else if (binary_fun.count(functors[1])) {
|
|
unary_fun_str = functors[0];
|
|
} else {
|
|
PADDLE_THROW("%s and %s are not included in fused_list.", functors[0],
|
|
functors[1]);
|
|
}
|
|
PADDLE_ENFORCE_EQ(unary_fun.count(unary_fun_str), 1,
|
|
"%s is not included in fused_list.", unary_fun_str);
|
|
return true;
|
|
}
|
|
|
|
class FusedElemwiseActivationOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE(
|
|
ctx->HasInput("X"),
|
|
"Input(X) of FusedElemwiseActivationOp op should not be null.");
|
|
PADDLE_ENFORCE(
|
|
ctx->HasInput("Y"),
|
|
"Input(Y) of FusedElemwiseActivationOp op should not be null.");
|
|
PADDLE_ENFORCE(
|
|
ctx->HasOutput("Out"),
|
|
"Output(Out) of FusedElemwiseActivationOp op should not be null.");
|
|
|
|
auto x_dim = ctx->GetInputDim("X");
|
|
auto y_dim = ctx->GetInputDim("Y");
|
|
|
|
// Whether the shape of Y is a continuous subsequence of X,
|
|
// For more information please refer to the op's introduction.
|
|
bool bcast_y = x_dim.size() >= y_dim.size();
|
|
if (x_dim.size() == y_dim.size()) {
|
|
for (int i = 0; i < x_dim.size(); ++i) {
|
|
if (x_dim[i] < y_dim[i]) {
|
|
bcast_y = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
auto &out_dim = bcast_y ? x_dim : y_dim;
|
|
std::string out_lod = bcast_y ? "X" : "Y";
|
|
|
|
if (ctx->Attrs().Get<bool>("keep_intermediate_value")) {
|
|
PADDLE_ENFORCE(ctx->HasOutput("IntermediateOut"),
|
|
"Output(IntermediateOut) of FusedElemwiseActivationOp "
|
|
"should not be null.");
|
|
|
|
if (IsUnaryCompound(
|
|
ctx->Attrs().Get<std::vector<std::string>>("functor_list"))) {
|
|
// for Unary(Binary(X, Y)), the shape and lod of out and
|
|
// intermediate_out are the same.
|
|
ctx->SetOutputDim("IntermediateOut", out_dim);
|
|
// set the lod of intermediate_out
|
|
ctx->ShareLoD(out_lod, /*->*/ "IntermediateOut");
|
|
} else {
|
|
// for Binary(X, Unary(Y)), the shape and lod of Y and
|
|
// intermediate_out are the same.
|
|
ctx->SetOutputDim("IntermediateOut", y_dim);
|
|
// set the lod of intermediate_out
|
|
ctx->ShareLoD("Y", /*->*/ "IntermediateOut");
|
|
}
|
|
}
|
|
ctx->SetOutputDim("Out", out_dim);
|
|
ctx->ShareLoD(out_lod, /*->*/ "Out");
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override {
|
|
PADDLE_ENFORCE_EQ(ctx.Input<framework::Tensor>("X")->type(),
|
|
ctx.Input<framework::Tensor>("Y")->type(),
|
|
"The element's type of input should be the same.");
|
|
auto input_data_type =
|
|
framework::ToDataType(ctx.Input<framework::Tensor>("X")->type());
|
|
return framework::OpKernelType(input_data_type, ctx.GetPlace());
|
|
}
|
|
};
|
|
|
|
class FusedElemwiseActivationMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput(
|
|
"X",
|
|
"(Tensor) The input tensor of fused_elemwise_activation operator.");
|
|
AddInput(
|
|
"Y",
|
|
"(Tensor) The input tensor of fused_elemwise_activation operator.");
|
|
AddOutput("Out",
|
|
"vector<Tensor> The output tensor of fused_elemwise_activation "
|
|
"operator.");
|
|
AddOutput("IntermediateOut",
|
|
"Tensor The IntermediateOut tensor of fused_elemwise_activation "
|
|
"operator.")
|
|
.AsIntermediate();
|
|
AddAttr<int>("axis",
|
|
"axis is used by elementwise_op, the default value is -1.")
|
|
.SetDefault(-1);
|
|
AddAttr<float>("scale",
|
|
"scale is used by scale_op, the default value is 0.0.")
|
|
.SetDefault(0.0);
|
|
AddAttr<bool>(
|
|
"recomputation",
|
|
"Whether to recompute the Out."
|
|
"The computation of fused_elemwise_activation_grad has two methods to "
|
|
"get the dx and dy, one is to use the 'Out', and the other is not. "
|
|
"The former method will save the time of recomputing the 'Out', but it "
|
|
"must occupy the memory to store the 'out'. While, the later method "
|
|
"can avoid occupying the memory, but it must recompute the 'Out'. "
|
|
"It is useful for Unary(Binary(X, Y)). The default value is true.")
|
|
.SetDefault(true);
|
|
AddAttr<bool>("keep_intermediate_value",
|
|
"Whether to save the intermediate_out.")
|
|
.SetDefault(false);
|
|
AddAttr<std::vector<std::string>>("functor_list",
|
|
"The functors that should be fused.")
|
|
.AddCustomChecker([&](const std::vector<std::string> &functor_list) {
|
|
PADDLE_ENFORCE(IsSupportedCompound(functor_list));
|
|
});
|
|
|
|
AddComment(R"DOC(
|
|
FusedElemwiseActivation Operator.
|
|
|
|
At present, FusedElemwiseActivation only supports Two kinds of compound
|
|
operators (elementwise_op and activation_op):
|
|
|
|
Z = Binary(X, Unary(Y))
|
|
Z = Unary(Binary(X, Y))
|
|
|
|
There are two cases for this operator:
|
|
|
|
1. The shape of $Y$ and $X$ is the same.
|
|
2. The shape of $Y$ is a continuous subsequence of $X$ or the shape of $X$ is a continuous subsequence of $Y$.
|
|
|
|
For case 2 (assume that the shape of $Y$ is a continuous subsequence of $X$ ):
|
|
|
|
1. Broadcast $Y$ to match the shape of $X$, where $axis$ is the start dimension index
|
|
for broadcasting $Y$ onto $X$.
|
|
2. If $axis$ is -1 (default), $axis = rank(X) - rank(Y)$.
|
|
3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of
|
|
subsequence, such as shape(Y) = (2, 1) => (2).
|
|
|
|
For example:
|
|
|
|
.. code-block:: python
|
|
|
|
shape(X) = (2, 3, 4, 5), shape(Y) = (,)
|
|
shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
|
|
shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
|
|
shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
|
|
shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
|
|
shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
|
|
|
|
|
|
The inputs $X$ and $Y$ can carry the different LoD information.
|
|
But the output only shares the LoD information with the one whose shape is the same with Out.
|
|
The attributions of activation_op can be get from fused_elemwise_activation_op's.
|
|
The functor_list records the functions to be fused, for example
|
|
["scale", "elementwise_add"].
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class FusedElemwiseActivationGradMaker
|
|
: public framework::SingleGradOpDescMaker {
|
|
public:
|
|
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
|
|
|
|
protected:
|
|
std::unique_ptr<framework::OpDesc> Apply() const override {
|
|
auto *op_desc_ptr = new framework::OpDesc();
|
|
op_desc_ptr->SetType(this->ForwardOpType() + "_grad");
|
|
|
|
for (auto &input_param : this->InputNames()) {
|
|
op_desc_ptr->SetInput(input_param, this->Input(input_param));
|
|
op_desc_ptr->SetOutput(framework::GradVarName(input_param),
|
|
this->InputGrad(input_param, true));
|
|
}
|
|
|
|
for (auto &output_param : this->OutputNames()) {
|
|
op_desc_ptr->SetInput(output_param, this->Output(output_param));
|
|
op_desc_ptr->SetInput(framework::GradVarName(output_param),
|
|
this->OutputGrad(output_param));
|
|
}
|
|
|
|
op_desc_ptr->SetAttrMap(this->Attrs());
|
|
|
|
std::vector<std::string> functor_names =
|
|
boost::get<std::vector<std::string>>(
|
|
op_desc_ptr->GetAttr("functor_list"));
|
|
functor_names[0] += "_grad";
|
|
functor_names[1] += "_grad";
|
|
op_desc_ptr->SetAttr("functor_list", functor_names);
|
|
return std::unique_ptr<framework::OpDesc>(op_desc_ptr);
|
|
}
|
|
};
|
|
|
|
class FusedElemwiseActivationOpGrad : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
|
"Input(Out@Grad) should not be null");
|
|
if (ctx->Attrs().Get<bool>("keep_intermediate_value")) {
|
|
PADDLE_ENFORCE(ctx->HasInput("IntermediateOut"),
|
|
"Input(IntermediateOut) should not be null");
|
|
} else {
|
|
PADDLE_ENFORCE_EQ(ctx->Inputs(framework::GradVarName("Out")).size(), 1);
|
|
}
|
|
|
|
auto funtor_list =
|
|
ctx->Attrs().Get<std::vector<std::string>>("functor_list");
|
|
auto x_grad_name = framework::GradVarName("X");
|
|
auto y_grad_name = framework::GradVarName("Y");
|
|
|
|
if (ctx->HasOutput(x_grad_name)) {
|
|
if (ctx->HasInputs("X")) {
|
|
ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
|
|
ctx->ShareLoD("X", x_grad_name);
|
|
} else {
|
|
// Node: If "X" is absence, the shape of Y should be a continuous
|
|
// subsequence of X, if not, we could not infer the shape of dx.
|
|
|
|
// Currently, only when Binary is elementwise_add or elementwise_sub,
|
|
// the "X" could be absent.
|
|
PADDLE_ENFORCE(InputXCanBeAbsent(funtor_list),
|
|
"Only when BinaryFunctor is elementwise_add, the 'X' "
|
|
"could be absent.");
|
|
|
|
// For Unary(Binary(X, Y)), IntermediateOut should not be empty.
|
|
if (IsUnaryCompound(funtor_list)) {
|
|
PADDLE_ENFORCE(
|
|
ctx->HasInputs("IntermediateOut"),
|
|
"If the compound_functor is Unary(Binary(X, Y)) and Binary "
|
|
"is elementwise_add, the intermediate_out must be not absent.");
|
|
}
|
|
|
|
ctx->SetOutputDim(x_grad_name,
|
|
ctx->GetInputDim(framework::GradVarName("Out")));
|
|
ctx->ShareLoD(framework::GradVarName("Out"), x_grad_name);
|
|
}
|
|
}
|
|
if (ctx->HasOutput(y_grad_name)) {
|
|
PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
|
|
ctx->SetOutputDim(y_grad_name, ctx->GetInputDim("Y"));
|
|
ctx->ShareLoD("Y", y_grad_name);
|
|
}
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override {
|
|
// PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
|
|
auto input_data_type_index = ctx.Input<framework::Tensor>("Y")->type();
|
|
auto input_data_type = framework::ToDataType(input_data_type_index);
|
|
return framework::OpKernelType(input_data_type, ctx.GetPlace());
|
|
}
|
|
};
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(fused_elemwise_activation, ops::FusedElemwiseActivationOp,
|
|
ops::FusedElemwiseActivationMaker,
|
|
ops::FusedElemwiseActivationGradMaker);
|
|
REGISTER_OPERATOR(fused_elemwise_activation_grad,
|
|
ops::FusedElemwiseActivationOpGrad);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
fused_elemwise_activation,
|
|
ops::FusedElemwiseActivationKernel<paddle::platform::CPUDeviceContext,
|
|
float>,
|
|
ops::FusedElemwiseActivationKernel<paddle::platform::CPUDeviceContext,
|
|
double>);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
fused_elemwise_activation_grad,
|
|
ops::FusedElemwiseActivationGradKernel<paddle::platform::CPUDeviceContext,
|
|
float>,
|
|
ops::FusedElemwiseActivationGradKernel<paddle::platform::CPUDeviceContext,
|
|
double>);
|