You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
144 lines
4.7 KiB
144 lines
4.7 KiB
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <sstream>
|
|
|
|
#include <gtest/gtest.h>
|
|
#include "ModelConfig.pb.h"
|
|
#include "paddle/gserver/layers/DataLayer.h"
|
|
#include "paddle/trainer/Trainer.h"
|
|
|
|
#include "LayerGradUtil.h"
|
|
#include "paddle/testing/TestUtil.h"
|
|
|
|
using namespace paddle; // NOLINT
|
|
|
|
DECLARE_int32(gpu_id);
|
|
DECLARE_bool(thread_local_rand_use_global_seed);
|
|
|
|
struct SingleBeamExpansion {
|
|
vector<int> seqStartPos;
|
|
vector<int> subSeqStartPos;
|
|
vector<real> candidateScores;
|
|
|
|
// TODO(caoying): store this into Argument.ids
|
|
vector<real> selectedIndices;
|
|
vector<int> groundTruth;
|
|
vector<int> labelSeqStartPos;
|
|
};
|
|
|
|
void genCandidateScores(bool hasSubSeq,
|
|
vector<real>& scores,
|
|
vector<int>& seqStartPos,
|
|
vector<int>& subSeqStartPos) {}
|
|
|
|
void genSelectedIndicesAndGroundtruth(size_t beamSize,
|
|
vector<int>& seqStartPos,
|
|
vector<real>& selectedIndices) {}
|
|
|
|
SingleBeamExpansion genOneBeam(size_t beamSize, bool hasSubSeq) {
|
|
SingleBeamExpansion beam;
|
|
genCandidateScores(
|
|
hasSubSeq, beam.candidateScores, beam.seqStartPos, beam.subSeqStartPos);
|
|
genSelectedIndicesAndGroundtruth(
|
|
beamSize,
|
|
hasSubSeq ? beam.subSeqStartPos : beam.seqStartPos,
|
|
beam.selectedIndices);
|
|
return beam;
|
|
}
|
|
|
|
void genRandomBeamExpansion(size_t expansionCount,
|
|
size_t beamSize,
|
|
vector<SingleBeamExpansion>& beamExpansions) {
|
|
beamExpansions.clear();
|
|
for (size_t i = 0; i < expansionCount; ++i) {
|
|
beamExpansions.emplace_back(genOneBeam(beamSize, i));
|
|
}
|
|
}
|
|
|
|
void testCrossEntropyOverBeam(bool useGpu) {
|
|
TestConfig config;
|
|
config.layerConfig.set_type("cross_entropy_over_beam");
|
|
|
|
const size_t expansionCount = 3;
|
|
const size_t beamSize = 3;
|
|
vector<SingleBeamExpansion> beams;
|
|
genRandomBeamExpansion(expansionCount, beamSize, beams);
|
|
|
|
size_t seqNum = 0;
|
|
for (size_t i = 0; i < beams.size(); ++i) {
|
|
const SingleBeamExpansion& beam = beams[i];
|
|
// create scores for all the candidates
|
|
MatrixPtr candidateScorePtr =
|
|
Matrix::create(beam.candidateScores.size(), 1, false, false);
|
|
candidateScorePtr->copyFrom(beam.candidateScores.data(),
|
|
beam.candidateScores.size());
|
|
|
|
ostringstream paramName;
|
|
paramName << "candidate_scores_" << i;
|
|
|
|
if (beam.subSeqStartPos.size()) {
|
|
seqNum = beam.subSeqStartPos.size() - 1;
|
|
config.inputDefs.push_back({INPUT_SELF_DEFINE_DATA,
|
|
paramName.str(),
|
|
candidateScorePtr,
|
|
beam.seqStartPos,
|
|
beam.subSeqStartPos});
|
|
} else {
|
|
seqNum = beam.seqStartPos.size() - 1;
|
|
config.inputDefs.push_back({INPUT_SELF_DEFINE_DATA,
|
|
paramName.str(),
|
|
candidateScorePtr,
|
|
beam.seqStartPos});
|
|
}
|
|
config.layerConfig.add_inputs();
|
|
|
|
// create indices for the selected candidates
|
|
MatrixPtr selectedCandidates =
|
|
Matrix::create(seqNum, beamSize, false, false);
|
|
selectedCandidates->copyFrom(beam.selectedIndices.data(),
|
|
beam.selectedIndices.size());
|
|
paramName.clear();
|
|
paramName << "selected_candidates_" << i;
|
|
config.inputDefs.push_back(
|
|
{INPUT_SELF_DEFINE_DATA, paramName.str(), selectedCandidates});
|
|
config.layerConfig.add_inputs();
|
|
|
|
// create the ground truth
|
|
paramName.clear();
|
|
paramName << "label_" << i;
|
|
config.inputDefs.push_back({INPUT_SELF_DEFINE_DATA,
|
|
paramName.str(),
|
|
beam.groundTruth,
|
|
beam.labelSeqStartPos});
|
|
}
|
|
|
|
testLayerGrad(
|
|
config, "cross_entropy_over_beam", seqNum, false, useGpu, false);
|
|
}
|
|
|
|
TEST(Layer, CrossEntropyOverBeam) {
|
|
for (bool useGpu : {false, true}) testCrossEntropyOverBeam(useGpu);
|
|
}
|
|
|
|
int main(int argc, char** argv) {
|
|
initMain(argc, argv);
|
|
hl_start();
|
|
hl_init(FLAGS_gpu_id);
|
|
FLAGS_thread_local_rand_use_global_seed = true;
|
|
srand(1);
|
|
testing::InitGoogleTest(&argc, argv);
|
|
return RUN_ALL_TESTS();
|
|
}
|