You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/inference/api/paddle_pass_builder.h

174 lines
4.8 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <sstream>
#include <string>
#include <vector>
/*! \file */
/*! \namespace paddle */
namespace paddle {
/** This is a pass builder based on string. It is part of inference API.
*/
class PaddlePassBuilder {
public:
explicit PaddlePassBuilder(const std::vector<std::string> &passes)
: passes_(passes) {}
void SetPasses(std::initializer_list<std::string> passes) {
passes_ = passes;
}
/** Append a pass to the end of the passes. */
void AppendPass(const std::string &pass_type);
/** Insert a pass to a specific position.
* @param idx the position to insert.
* @param pass_type the pass key.
*/
void InsertPass(size_t idx, const std::string &pass_type);
/** Delete the `idx`-th pass. */
void DeletePass(size_t idx);
/** Delete all the passes that has type `pass_type`. */
void DeletePass(const std::string &pass_type);
void ClearPasses();
/** Append an analysis pass. */
void AppendAnalysisPass(const std::string &pass);
/** Visualize the computation graph after each pass by generating a DOT
* language file, one can draw them with the Graphviz toolkit.
*/
void TurnOnDebug();
/** Human-readible information. */
std::string DebugString();
const std::vector<std::string> &AllPasses() const { return passes_; }
std::vector<std::string> AnalysisPasses() const {
auto passes = analysis_passes_;
// To make sure the ir_graph_to_program should be the last pass so any
// modication of IR will persist to the program.
passes.push_back("ir_graph_to_program_pass");
return passes;
}
protected:
std::vector<std::string> analysis_passes_{
{"ir_graph_build_pass", "ir_analysis_pass",
"ir_params_sync_among_devices_pass"}};
std::vector<std::string> passes_;
};
/**Pass strategy to help control the IR passes.
*/
class PassStrategy : public PaddlePassBuilder {
public:
explicit PassStrategy(const std::vector<std::string> &passes)
: PaddlePassBuilder(passes) {}
/** The MKLDNN control exists in both CPU and GPU mode, because there can be
* still some CPU kernels running in CPU mode.
*/
virtual void EnableMKLDNN() {}
/** Enable MKLDNN quantize optimization
*/
virtual void EnableMkldnnQuantizer() {}
bool use_gpu() const { return use_gpu_; }
virtual ~PassStrategy() = default;
protected:
bool use_gpu_{false};
bool use_mkldnn_{false};
};
/** The CPU passes controller, it is used in AnalysisPredictor with CPU mode.
*/
class CpuPassStrategy : public PassStrategy {
public:
CpuPassStrategy();
explicit CpuPassStrategy(const CpuPassStrategy &other)
: PassStrategy(other.AllPasses()) {}
virtual ~CpuPassStrategy() = default;
void EnableMKLDNN() override {
// TODO(Superjomn) Consider the way to mix CPU with GPU.
#ifdef PADDLE_WITH_MKLDNN
if (!use_mkldnn_) {
passes_.insert(passes_.begin(), "mkldnn_placement_pass");
for (auto &pass : std::vector<std::string>(
{"depthwise_conv_mkldnn_pass", //
"conv_bn_fuse_pass", // Execute BN passes again to
"conv_eltwiseadd_bn_fuse_pass", // preserve correct pass order
"conv_bias_mkldnn_fuse_pass", //
"conv3d_bias_mkldnn_fuse_pass", //
"conv_relu_mkldnn_fuse_pass", //
"conv_elementwise_add_mkldnn_fuse_pass"})) {
passes_.push_back(pass);
}
}
use_mkldnn_ = true;
#else
use_mkldnn_ = false;
#endif
}
void EnableMkldnnQuantizer() override {
#ifdef PADDLE_WITH_MKLDNN
if (!use_mkldnn_quantizer_) {
passes_.push_back("cpu_quantize_placement_pass");
}
use_mkldnn_quantizer_ = true;
#else
use_mkldnn_quantizer_ = false;
#endif
}
protected:
bool use_mkldnn_quantizer_{false};
};
/** The GPU passes strategy, it is used in AnalysisPredictor with GPU mode.
*/
class GpuPassStrategy : public PassStrategy {
public:
GpuPassStrategy();
explicit GpuPassStrategy(const GpuPassStrategy &other)
: PassStrategy(other.AllPasses()) {
use_gpu_ = true;
}
void EnableMKLDNN() override;
void EnableMkldnnQuantizer() override;
virtual ~GpuPassStrategy() = default;
};
extern const std::vector<std::string> kAnakinSubgraphPasses;
} // namespace paddle