You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
204 lines
7.2 KiB
204 lines
7.2 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.layers as layers
|
|
from paddle.fluid.framework import Program, program_guard
|
|
import unittest
|
|
|
|
|
|
class TestDetection(unittest.TestCase):
|
|
def test_detection_output(self):
|
|
program = Program()
|
|
with program_guard(program):
|
|
pb = layers.data(
|
|
name='prior_box',
|
|
shape=[10, 4],
|
|
append_batch_size=False,
|
|
dtype='float32')
|
|
pbv = layers.data(
|
|
name='prior_box_var',
|
|
shape=[10, 4],
|
|
append_batch_size=False,
|
|
dtype='float32')
|
|
loc = layers.data(
|
|
name='target_box',
|
|
shape=[2, 10, 4],
|
|
append_batch_size=False,
|
|
dtype='float32')
|
|
scores = layers.data(
|
|
name='scores',
|
|
shape=[2, 10, 20],
|
|
append_batch_size=False,
|
|
dtype='float32')
|
|
out = layers.detection_output(
|
|
scores=scores, loc=loc, prior_box=pb, prior_box_var=pbv)
|
|
self.assertIsNotNone(out)
|
|
self.assertEqual(out.shape[-1], 6)
|
|
print(str(program))
|
|
|
|
def test_detection_api(self):
|
|
program = Program()
|
|
with program_guard(program):
|
|
x = layers.data(name='x', shape=[4], dtype='float32')
|
|
y = layers.data(name='y', shape=[4], dtype='float32')
|
|
z = layers.data(name='z', shape=[4], dtype='float32', lod_level=1)
|
|
iou = layers.iou_similarity(x=x, y=y)
|
|
bcoder = layers.box_coder(
|
|
prior_box=x,
|
|
prior_box_var=y,
|
|
target_box=z,
|
|
code_type='encode_center_size')
|
|
self.assertIsNotNone(iou)
|
|
self.assertIsNotNone(bcoder)
|
|
|
|
matched_indices, matched_dist = layers.bipartite_match(iou)
|
|
self.assertIsNotNone(matched_indices)
|
|
self.assertIsNotNone(matched_dist)
|
|
|
|
gt = layers.data(
|
|
name='gt', shape=[1, 1], dtype='int32', lod_level=1)
|
|
trg, trg_weight = layers.target_assign(
|
|
gt, matched_indices, mismatch_value=0)
|
|
self.assertIsNotNone(trg)
|
|
self.assertIsNotNone(trg_weight)
|
|
|
|
gt2 = layers.data(
|
|
name='gt2', shape=[10, 4], dtype='float32', lod_level=1)
|
|
trg, trg_weight = layers.target_assign(
|
|
gt2, matched_indices, mismatch_value=0)
|
|
self.assertIsNotNone(trg)
|
|
self.assertIsNotNone(trg_weight)
|
|
|
|
print(str(program))
|
|
|
|
def test_ssd_loss(self):
|
|
program = Program()
|
|
with program_guard(program):
|
|
pb = layers.data(
|
|
name='prior_box',
|
|
shape=[10, 4],
|
|
append_batch_size=False,
|
|
dtype='float32')
|
|
pbv = layers.data(
|
|
name='prior_box_var',
|
|
shape=[10, 4],
|
|
append_batch_size=False,
|
|
dtype='float32')
|
|
loc = layers.data(name='target_box', shape=[10, 4], dtype='float32')
|
|
scores = layers.data(name='scores', shape=[10, 21], dtype='float32')
|
|
gt_box = layers.data(
|
|
name='gt_box', shape=[4], lod_level=1, dtype='float32')
|
|
gt_label = layers.data(
|
|
name='gt_label', shape=[1], lod_level=1, dtype='int32')
|
|
loss = layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
|
|
self.assertIsNotNone(loss)
|
|
self.assertEqual(loss.shape[-1], 1)
|
|
print(str(program))
|
|
|
|
|
|
class TestPriorBox(unittest.TestCase):
|
|
def test_prior_box(self):
|
|
data_shape = [3, 224, 224]
|
|
images = fluid.layers.data(
|
|
name='pixel', shape=data_shape, dtype='float32')
|
|
conv1 = fluid.layers.conv2d(images, 3, 3, 2)
|
|
box, var = layers.prior_box(
|
|
input=conv1,
|
|
image=images,
|
|
min_sizes=[100.0],
|
|
aspect_ratios=[1.],
|
|
flip=True,
|
|
clip=True)
|
|
assert len(box.shape) == 4
|
|
assert box.shape == var.shape
|
|
assert box.shape[3] == 4
|
|
|
|
|
|
class TestAnchorGenerator(unittest.TestCase):
|
|
def test_anchor_generator(self):
|
|
data_shape = [3, 224, 224]
|
|
images = fluid.layers.data(
|
|
name='pixel', shape=data_shape, dtype='float32')
|
|
conv1 = fluid.layers.conv2d(images, 3, 3, 2)
|
|
anchor, var = fluid.layers.anchor_generator(
|
|
input=conv1,
|
|
anchor_sizes=[64, 128, 256, 512],
|
|
aspect_ratios=[0.5, 1.0, 2.0],
|
|
variance=[0.1, 0.1, 0.2, 0.2],
|
|
stride=[16.0, 16.0],
|
|
offset=0.5)
|
|
assert len(anchor.shape) == 4
|
|
assert anchor.shape == var.shape
|
|
assert anchor.shape[3] == 4
|
|
|
|
|
|
class TestMultiBoxHead(unittest.TestCase):
|
|
def test_multi_box_head(self):
|
|
data_shape = [3, 224, 224]
|
|
mbox_locs, mbox_confs, box, var = self.multi_box_head_output(data_shape)
|
|
|
|
assert len(box.shape) == 2
|
|
assert box.shape == var.shape
|
|
assert box.shape[1] == 4
|
|
assert mbox_locs.shape[1] == mbox_confs.shape[1]
|
|
|
|
def multi_box_head_output(self, data_shape):
|
|
images = fluid.layers.data(
|
|
name='pixel', shape=data_shape, dtype='float32')
|
|
conv1 = fluid.layers.conv2d(images, 3, 3, 2)
|
|
conv2 = fluid.layers.conv2d(conv1, 3, 3, 2)
|
|
conv3 = fluid.layers.conv2d(conv2, 3, 3, 2)
|
|
conv4 = fluid.layers.conv2d(conv3, 3, 3, 2)
|
|
conv5 = fluid.layers.conv2d(conv4, 3, 3, 2)
|
|
|
|
mbox_locs, mbox_confs, box, var = layers.multi_box_head(
|
|
inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
|
|
image=images,
|
|
num_classes=21,
|
|
min_ratio=20,
|
|
max_ratio=90,
|
|
aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
|
|
base_size=300,
|
|
offset=0.5,
|
|
flip=True,
|
|
clip=True)
|
|
|
|
return mbox_locs, mbox_confs, box, var
|
|
|
|
|
|
class TestDetectionMAP(unittest.TestCase):
|
|
def test_detection_map(self):
|
|
program = Program()
|
|
with program_guard(program):
|
|
detect_res = layers.data(
|
|
name='detect_res',
|
|
shape=[10, 6],
|
|
append_batch_size=False,
|
|
dtype='float32')
|
|
label = layers.data(
|
|
name='label',
|
|
shape=[10, 6],
|
|
append_batch_size=False,
|
|
dtype='float32')
|
|
|
|
map_out = layers.detection_map(detect_res, label, 21)
|
|
self.assertIsNotNone(map_out)
|
|
self.assertEqual(map_out.shape, (1, ))
|
|
print(str(program))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|