You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_elementwise_mod_op.py

210 lines
7.7 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from op_test import OpTest
import random
class TestElementwiseModOp(OpTest):
def init_kernel_type(self):
self.use_mkldnn = False
def setUp(self):
self.op_type = "elementwise_mod"
self.axis = -1
self.init_dtype()
self.init_input_output()
self.init_kernel_type()
self.init_axis()
self.inputs = {
'X': OpTest.np_dtype_to_fluid_dtype(self.x),
'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
}
self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn}
self.outputs = {'Out': self.out}
def test_check_output(self):
self.check_output()
def init_input_output(self):
self.x = np.random.uniform(0, 10000, [10, 10]).astype(self.dtype)
self.y = np.random.uniform(0, 1000, [10, 10]).astype(self.dtype)
self.out = np.mod(self.x, self.y)
def init_dtype(self):
self.dtype = np.int32
def init_axis(self):
pass
class TestElementwiseModOp_scalar(TestElementwiseModOp):
def init_input_output(self):
scale_x = random.randint(0, 100000000)
scale_y = random.randint(1, 100000000)
self.x = (np.random.rand(2, 3, 4) * scale_x).astype(self.dtype)
self.y = (np.random.rand(1) * scale_y + 1).astype(self.dtype)
self.out = np.mod(self.x, self.y)
class TestElementwiseModOpFloat(TestElementwiseModOp):
def init_dtype(self):
self.dtype = np.float32
def init_input_output(self):
self.x = np.random.uniform(-1000, 1000, [10, 10]).astype(self.dtype)
self.y = np.random.uniform(-100, 100, [10, 10]).astype(self.dtype)
self.out = np.fmod(self.y + np.fmod(self.x, self.y), self.y)
def test_check_output(self):
self.check_output()
class TestElementwiseModOpDouble(TestElementwiseModOpFloat):
def init_dtype(self):
self.dtype = np.float64
class TestRemainderAPI(unittest.TestCase):
def setUp(self):
paddle.set_default_dtype("float64")
self.places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
self.places.append(fluid.CUDAPlace(0))
def check_static_result(self, place):
# rule 1
with fluid.program_guard(fluid.Program(), fluid.Program()):
x = fluid.data(name="x", shape=[3], dtype="float64")
y = np.array([1, 2, 3])
self.assertRaises(TypeError, paddle.remainder, x=x, y=y)
# rule 3:
with fluid.program_guard(fluid.Program(), fluid.Program()):
x = fluid.data(name="x", shape=[3], dtype="float64")
y = fluid.data(name="y", shape=[3], dtype="float32")
self.assertRaises(TypeError, paddle.remainder, x=x, y=y)
# rule 4: x is Tensor, y is scalar
with fluid.program_guard(fluid.Program(), fluid.Program()):
x = fluid.data(name="x", shape=[3], dtype="float64")
y = 2
exe = fluid.Executor(place)
res = x % y
np_z = exe.run(fluid.default_main_program(),
feed={"x": np.array([2, 3, 4]).astype('float64')},
fetch_list=[res])
z_expected = np.array([0., 1., 0.])
self.assertEqual((np_z[0] == z_expected).all(), True)
# rule 5: y is Tensor, x is scalar
with fluid.program_guard(fluid.Program(), fluid.Program()):
x = 3
y = fluid.data(name="y", shape=[3], dtype="float32")
self.assertRaises(TypeError, paddle.remainder, x=x, y=y)
# rule 6: y is Tensor, x is Tensor
with fluid.program_guard(fluid.Program(), fluid.Program()):
x = fluid.data(name="x", shape=[3], dtype="float64")
y = fluid.data(name="y", shape=[1], dtype="float64")
exe = fluid.Executor(place)
res = x % y
np_z = exe.run(fluid.default_main_program(),
feed={
"x": np.array([1., 2., 4]).astype('float64'),
"y": np.array([1.5]).astype('float64')
},
fetch_list=[res])
z_expected = np.array([1., 0.5, 1.0])
self.assertEqual((np_z[0] == z_expected).all(), True)
# rule 6: y is Tensor, x is Tensor
with fluid.program_guard(fluid.Program(), fluid.Program()):
x = fluid.data(name="x", shape=[6], dtype="float64")
y = fluid.data(name="y", shape=[1], dtype="float64")
exe = fluid.Executor(place)
res = x % y
np_z = exe.run(
fluid.default_main_program(),
feed={
"x": np.array([-3., -2, -1, 1, 2, 3]).astype('float64'),
"y": np.array([2]).astype('float64')
},
fetch_list=[res])
z_expected = np.array([1., 0., 1., 1., 0., 1.])
self.assertEqual((np_z[0] == z_expected).all(), True)
def test_static(self):
for place in self.places:
self.check_static_result(place=place)
def test_dygraph(self):
for place in self.places:
with fluid.dygraph.guard(place):
# rule 1 : avoid numpy.ndarray
np_x = np.array([2, 3, 4])
np_y = np.array([1, 5, 2])
x = paddle.to_tensor(np_x)
self.assertRaises(TypeError, paddle.remainder, x=x, y=np_y)
# rule 3: both the inputs are Tensor
np_x = np.array([2, 3, 4])
np_y = np.array([1, 5, 2])
x = paddle.to_tensor(np_x, dtype="float32")
y = paddle.to_tensor(np_y, dtype="float64")
self.assertRaises(TypeError, paddle.remainder, x=x, y=y)
# rule 4: x is Tensor, y is scalar
np_x = np.array([2, 3, 4])
x = paddle.to_tensor(np_x, dtype="int32")
y = 2
z = x % y
z_expected = np.array([0, 1, 0])
self.assertEqual((z_expected == z.numpy()).all(), True)
# rule 5: y is Tensor, x is scalar
np_x = np.array([2, 3, 4])
x = paddle.to_tensor(np_x)
self.assertRaises(TypeError, paddle.remainder, x=3, y=x)
# rule 6: y is Tensor, x is Tensor
np_x = np.array([1., 2., 4])
np_y = np.array([1.5])
x = paddle.to_tensor(np_x)
y = paddle.to_tensor(np_y)
z = x % y
z_expected = np.array([1., 0.5, 1.0])
self.assertEqual((z_expected == z.numpy()).all(), True)
# rule 6: y is Tensor, x is Tensor
np_x = np.array([-3., -2, -1, 1, 2, 3])
np_y = np.array([2.])
x = paddle.to_tensor(np_x)
y = paddle.to_tensor(np_y)
z = x % y
z_expected = np.array([1., 0., 1., 1., 0., 1.])
self.assertEqual((z_expected == z.numpy()).all(), True)
if __name__ == '__main__':
unittest.main()