You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
184 lines
6.6 KiB
184 lines
6.6 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle/fluid/framework/ir/fc_fuse_pass.h"
|
|
#include <memory>
|
|
#include <string>
|
|
#include <unordered_set>
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/ir/graph_helper.h"
|
|
#include "paddle/fluid/platform/enforce.h"
|
|
|
|
namespace paddle {
|
|
namespace framework {
|
|
namespace ir {
|
|
|
|
void FCFusePass::ApplyImpl(ir::Graph* graph) const {
|
|
PADDLE_ENFORCE_NOT_NULL(graph);
|
|
FusePassBase::Init("fc_fuse", graph);
|
|
|
|
int found_fc_count = 0;
|
|
for (bool with_relu : {true, false}) {
|
|
found_fc_count += ApplyFCPattern(graph, with_relu);
|
|
}
|
|
|
|
AddStatis(found_fc_count);
|
|
}
|
|
|
|
int FCFusePass::ApplyFCPattern(Graph* graph, bool with_relu) const {
|
|
GraphPatternDetector gpd;
|
|
auto* x = gpd.mutable_pattern()
|
|
->NewNode("fc_fuse/x")
|
|
->AsInput()
|
|
->assert_is_op_input("mul", "X");
|
|
patterns::FC fc_pattern(gpd.mutable_pattern(), "fc_fuse");
|
|
fc_pattern(x, true /*with bias*/, with_relu);
|
|
|
|
int found_fc_count = 0;
|
|
auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
|
|
Graph* g) {
|
|
if (subgraph.count(x) <= 0) {
|
|
LOG(WARNING) << "The subgraph is empty.";
|
|
return;
|
|
}
|
|
|
|
VLOG(4) << "handle FC fuse";
|
|
GET_IR_NODE_FROM_SUBGRAPH(w, w, fc_pattern);
|
|
GET_IR_NODE_FROM_SUBGRAPH(bias, bias, fc_pattern);
|
|
GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_out, elementwise_add_out,
|
|
fc_pattern);
|
|
GET_IR_NODE_FROM_SUBGRAPH(mul, mul, fc_pattern);
|
|
GET_IR_NODE_FROM_SUBGRAPH(elementwise_add, elementwise_add, fc_pattern);
|
|
GET_IR_NODE_FROM_SUBGRAPH(mul_out, mul_out, fc_pattern);
|
|
Node* relu = nullptr;
|
|
Node* relu_out = nullptr;
|
|
if (with_relu) {
|
|
GET_IR_NODE_FROM_SUBGRAPH(tmp_relu, relu, fc_pattern);
|
|
GET_IR_NODE_FROM_SUBGRAPH(tmp_relu_out, relu_out, fc_pattern);
|
|
relu = tmp_relu;
|
|
relu_out = tmp_relu_out;
|
|
}
|
|
|
|
// Create an FC Node.
|
|
OpDesc desc;
|
|
desc.SetType("fc");
|
|
|
|
// Set inputs of fc
|
|
desc.SetInput("Input", {subgraph.at(x)->Name()});
|
|
desc.SetInput("W", {w->Name()});
|
|
desc.SetInput("Bias", {bias->Name()});
|
|
|
|
// Set output of fc
|
|
std::string fc_out_name =
|
|
with_relu ? relu_out->Name() : elementwise_add_out->Name();
|
|
desc.SetOutput("Out", std::vector<std::string>({fc_out_name}));
|
|
|
|
// Set attrs of fc
|
|
desc.SetAttr("in_num_col_dims", mul->Op()->GetAttr("x_num_col_dims"));
|
|
std::string activation_type = with_relu ? "relu" : "";
|
|
desc.SetAttr("activation_type", activation_type);
|
|
|
|
// This is to add padding for dimension 128 on concern of MKL performance
|
|
bool use_gpu = Has("use_gpu") ? Get<bool>("use_gpu") : false;
|
|
bool use_fc_padding =
|
|
Has("use_fc_padding") ? Get<bool>("use_fc_padding") : true;
|
|
const std::string& w_name = patterns::UniqueKey(w->Name());
|
|
VarDesc w_key(w_name);
|
|
w_key.SetPersistable(true);
|
|
auto* w_node = g->CreateVarNode(&w_key);
|
|
if (!use_gpu && use_fc_padding) {
|
|
auto* scope = param_scope();
|
|
auto* weight = scope->FindVar(w->Name())->GetMutable<LoDTensor>();
|
|
auto* weight_data = weight->data<float>();
|
|
auto weight_dims = weight->dims();
|
|
int weight_num = product(weight_dims);
|
|
int w_h = weight_dims[0];
|
|
int w_w = weight_dims[1];
|
|
if (w_h % 128 == 0 && w_w % 128 == 0) {
|
|
auto* w_var = scope->Var(w_name);
|
|
auto* w_tensor = w_var->GetMutable<framework::LoDTensor>();
|
|
|
|
auto* weight_data_tmp = new float[weight_num];
|
|
for (int i = 0; i < w_h; i++) {
|
|
memcpy(weight_data_tmp + i * w_w, weight_data + i * w_w,
|
|
w_w * sizeof(float));
|
|
}
|
|
w_tensor->Resize(DDim{weight_dims[0] + 4, weight_dims[1] + 4});
|
|
auto* weight_data_new =
|
|
w_tensor->mutable_data<float>(platform::CPUPlace());
|
|
for (int i = 0; i < w_h; i++) {
|
|
memcpy(weight_data_new + i * (w_w + 4), weight_data_tmp + i * w_w,
|
|
w_w * sizeof(float));
|
|
}
|
|
delete[] weight_data_tmp;
|
|
desc.SetInput("W", {w_name});
|
|
desc.SetAttr("padding_weights", true);
|
|
desc.Flush();
|
|
}
|
|
}
|
|
|
|
// For anakin subgraph int8
|
|
// When in anakin subgraph int8 mode, the pattern like "fake_quant + mul +
|
|
// fake_dequant" can be detected by the quant_dequant_fuse_pass. This pass
|
|
// will add "input_scale", "weight_scale" which are extracted from
|
|
// fake_quant op and fake_dequant op to mul op, and then delete the
|
|
// fake_quant op and fake_dequant op in the graph. If the mul op has the
|
|
// scale info, we should add those to the fused fc.
|
|
auto* mul_op_desc = mul->Op();
|
|
if (mul_op_desc->HasAttr("enable_int8")) {
|
|
desc.SetAttr("enable_int8", mul_op_desc->GetAttr("enable_int8"));
|
|
desc.SetAttr("Input_scale", mul_op_desc->GetAttr("X_scale"));
|
|
desc.SetAttr("weight_scale", mul_op_desc->GetAttr("weight_scale"));
|
|
if (mul_op_desc->HasAttr("out_scale"))
|
|
desc.SetAttr("out_scale", mul_op_desc->GetAttr("out_scale"));
|
|
auto elementwise_desc = elementwise_add->Op();
|
|
if (elementwise_desc->HasAttr("out_scale"))
|
|
desc.SetAttr("out_scale", elementwise_desc->GetAttr("out_scale"));
|
|
}
|
|
|
|
auto fc_node = g->CreateOpNode(&desc); // OpDesc will be copied.
|
|
if (with_relu) {
|
|
GraphSafeRemoveNodes(
|
|
graph, {mul, elementwise_add, mul_out, elementwise_add_out, relu});
|
|
} else {
|
|
GraphSafeRemoveNodes(graph, {mul, elementwise_add, mul_out});
|
|
}
|
|
|
|
IR_NODE_LINK_TO(subgraph.at(x), fc_node);
|
|
if (desc.GetAttrIfExists<bool>("padding_weights")) {
|
|
IR_NODE_LINK_TO(w_node, fc_node);
|
|
} else {
|
|
GraphSafeRemoveNodes(g, {w_node});
|
|
IR_NODE_LINK_TO(w, fc_node);
|
|
}
|
|
IR_NODE_LINK_TO(bias, fc_node);
|
|
if (with_relu) {
|
|
IR_NODE_LINK_TO(fc_node, relu_out);
|
|
} else {
|
|
IR_NODE_LINK_TO(fc_node, elementwise_add_out);
|
|
}
|
|
|
|
found_fc_count++;
|
|
};
|
|
gpd(graph, handler);
|
|
return found_fc_count;
|
|
}
|
|
|
|
} // namespace ir
|
|
} // namespace framework
|
|
} // namespace paddle
|
|
|
|
REGISTER_PASS(fc_fuse_pass, paddle::framework::ir::FCFusePass)
|
|
.RequirePassAttr("use_gpu");
|