You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
177 lines
5.1 KiB
177 lines
5.1 KiB
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "PaddleAPI.h"
|
|
#include "PaddleAPIPrivate.h"
|
|
|
|
#include <stdlib.h>
|
|
#include <memory>
|
|
#include <atomic>
|
|
|
|
#include "paddle/trainer/ParamUtil.h"
|
|
#include "paddle/trainer/Trainer.h"
|
|
#include "paddle/gserver/gradientmachines/NeuralNetwork.h"
|
|
#include "paddle/trainer/TrainerInternal.h"
|
|
#include "paddle/utils/Flags.h"
|
|
|
|
using paddle::real;
|
|
|
|
P_DECLARE_string(config);
|
|
P_DECLARE_string(init_model_path);
|
|
P_DECLARE_int32(start_pass);
|
|
|
|
struct TrainerPrivate : public paddle::Trainer {
|
|
bool _trainOneBatch(size_t batchSize);
|
|
bool forwardOneBatch(size_t batchSize);
|
|
void forwardOneDataBatch(const std::vector<paddle::Argument>& inArgs);
|
|
void setBatchSize(size_t batchSize);
|
|
std::vector<paddle::Argument>& getForwardOutput();
|
|
|
|
void startTestPeriod();
|
|
void finishTestPeriod();
|
|
void testOneDataBatch(const paddle::DataBatch& dataBatch);
|
|
TrainerPrivate() : paddle::Trainer() {}
|
|
};
|
|
|
|
Trainer::Trainer() : m(new TrainerPrivate()) {
|
|
auto conf = paddle::TrainerConfigHelper::createFromFlags();
|
|
if (conf != nullptr) {
|
|
m->init(conf);
|
|
}
|
|
}
|
|
|
|
Trainer::~Trainer() { delete m; }
|
|
|
|
Trainer* Trainer::createByCommandLine() throw(IOError) {
|
|
auto retv = new Trainer();
|
|
if (retv->m->getConfig().IsInitialized()) {
|
|
return retv;
|
|
} else {
|
|
throw IOError();
|
|
}
|
|
}
|
|
|
|
Trainer::Trainer(TrainerConfig* config, GradientMachine* gm)
|
|
: m(new TrainerPrivate()) {
|
|
m->init(config->m->conf, /* testing= */ false, gm ? gm->m->machine : nullptr);
|
|
}
|
|
|
|
Trainer* Trainer::create(TrainerConfig* config,
|
|
GradientMachine* gm) throw(IOError) {
|
|
auto retv = new Trainer(config, gm);
|
|
if (retv->m->getConfig().IsInitialized()) {
|
|
return retv;
|
|
} else {
|
|
retv->m->getConfig().CheckInitialized();
|
|
throw IOError();
|
|
}
|
|
}
|
|
|
|
void Trainer::startTrain() { m->startTrain(); }
|
|
|
|
void Trainer::finishTrain() { m->finishTrain(); }
|
|
|
|
void Trainer::startTrainPass() { m->startTrainPass(); }
|
|
|
|
void Trainer::finishTrainPass() { m->finishTrainPass(); }
|
|
|
|
void Trainer::trainOneDataBatch(size_t batchSize, const Arguments& inArgs) {
|
|
paddle::DataBatch dataBatch;
|
|
dataBatch.getStreams() = inArgs.m->outputs;
|
|
dataBatch.setSize(batchSize);
|
|
m->trainOneDataBatch(dataBatch);
|
|
}
|
|
|
|
bool Trainer::trainOneBatch(size_t batchSize) {
|
|
return m->_trainOneBatch(batchSize);
|
|
}
|
|
|
|
bool TrainerPrivate::_trainOneBatch(size_t batchSize) {
|
|
paddle::DataBatch dataBatch;
|
|
CHECK(dataProvider_) << "data_provider is not specified";
|
|
int num = dataProvider_->getNextBatch(batchSize, &dataBatch);
|
|
if (num == 0) {
|
|
return false;
|
|
}
|
|
trainOneDataBatch(dataBatch);
|
|
return false;
|
|
}
|
|
|
|
void TrainerPrivate::startTestPeriod() {
|
|
if (!tester_) {
|
|
createTester();
|
|
}
|
|
tester_->startTestPeriod();
|
|
}
|
|
|
|
void Trainer::startTestPeriod() { m->startTestPeriod(); }
|
|
|
|
void TrainerPrivate::testOneDataBatch(const paddle::DataBatch& dataBatch) {
|
|
tester_->testOneDataBatch(dataBatch, &forwardOutput_);
|
|
}
|
|
|
|
void Trainer::testOneDataBatch(size_t batchSize, const Arguments& args) {
|
|
paddle::DataBatch dataBatch;
|
|
dataBatch.getStreams() = args.m->outputs;
|
|
dataBatch.setSize(batchSize);
|
|
m->testOneDataBatch(dataBatch);
|
|
}
|
|
|
|
void TrainerPrivate::finishTestPeriod() { tester_->finishTestPeriod(); }
|
|
void Trainer::finishTestPeriod() { m->finishTestPeriod(); }
|
|
|
|
Matrix* Trainer::getLayerOutput(const std::string& layerName) {
|
|
auto nn = std::dynamic_pointer_cast<paddle::NeuralNetwork>(
|
|
this->m->getGradientMachine());
|
|
CHECK(nn) << "trainerInternal_.getGradientMachine() is not NeuralNetwork";
|
|
auto m = nn->getLayerOutput(layerName);
|
|
return Matrix::createByPaddleMatrixPtr(&m);
|
|
}
|
|
|
|
void Trainer::forwardOneBatch(size_t batchSize) {
|
|
m->forwardOneBatch(batchSize);
|
|
}
|
|
|
|
bool TrainerPrivate::forwardOneBatch(size_t batchSize) {
|
|
CHECK(dataProvider_) << "data_provider is not specified";
|
|
paddle::DataBatch dataBatch;
|
|
int num = dataProvider_->getNextBatch(batchSize, &dataBatch);
|
|
if (num == 0) {
|
|
return false;
|
|
}
|
|
|
|
forwardOneDataBatch(dataBatch.getStreams());
|
|
return true;
|
|
}
|
|
|
|
void TrainerPrivate::forwardOneDataBatch(
|
|
const std::vector<paddle::Argument>& inArgs) {
|
|
std::vector<paddle::Argument>& outArgs = forwardOutput_;
|
|
|
|
if (config_->getOptConfig().use_sparse_remote_updater()) {
|
|
trainerInternal_.getGradientMachine()->prefetch(inArgs);
|
|
trainerInternal_.getParameterUpdater()->getParametersRemote();
|
|
}
|
|
trainerInternal_.getGradientMachine()->forward(
|
|
inArgs, &outArgs, paddle::PASS_TEST);
|
|
}
|
|
|
|
Arguments* Trainer::getForwardOutput() {
|
|
return Arguments::createByPaddleArgumentVector(&m->getForwardOutput());
|
|
}
|
|
|
|
std::vector<paddle::Argument>& TrainerPrivate::getForwardOutput() {
|
|
return forwardOutput_;
|
|
}
|