You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/test_detection.py

813 lines
30 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from paddle.fluid.layers import detection
from paddle.fluid.framework import Program, program_guard
import unittest
class TestDetection(unittest.TestCase):
def test_detection_output(self):
program = Program()
with program_guard(program):
pb = layers.data(
name='prior_box',
shape=[10, 4],
append_batch_size=False,
dtype='float32')
pbv = layers.data(
name='prior_box_var',
shape=[10, 4],
append_batch_size=False,
dtype='float32')
loc = layers.data(
name='target_box',
shape=[2, 10, 4],
append_batch_size=False,
dtype='float32')
scores = layers.data(
name='scores',
shape=[2, 10, 20],
append_batch_size=False,
dtype='float32')
out = layers.detection_output(
scores=scores, loc=loc, prior_box=pb, prior_box_var=pbv)
out2, index = layers.detection_output(
scores=scores,
loc=loc,
prior_box=pb,
prior_box_var=pbv,
return_index=True)
self.assertIsNotNone(out)
self.assertIsNotNone(out2)
self.assertIsNotNone(index)
self.assertEqual(out.shape[-1], 6)
print(str(program))
def test_box_coder_api(self):
program = Program()
with program_guard(program):
x = layers.data(name='x', shape=[4], dtype='float32')
y = layers.data(name='z', shape=[4], dtype='float32', lod_level=1)
bcoder = layers.box_coder(
prior_box=x,
prior_box_var=[0.1, 0.2, 0.1, 0.2],
target_box=y,
code_type='encode_center_size')
self.assertIsNotNone(bcoder)
print(str(program))
def test_box_coder_error(self):
program = Program()
with program_guard(program):
x1 = fluid.data(name='x1', shape=[10, 4], dtype='int32')
y1 = fluid.data(
name='y1', shape=[10, 4], dtype='float32', lod_level=1)
x2 = fluid.data(name='x2', shape=[10, 4], dtype='float32')
y2 = fluid.data(
name='y2', shape=[10, 4], dtype='int32', lod_level=1)
self.assertRaises(
TypeError,
layers.box_coder,
prior_box=x1,
prior_box_var=[0.1, 0.2, 0.1, 0.2],
target_box=y1,
code_type='encode_center_size')
self.assertRaises(
TypeError,
layers.box_coder,
prior_box=x2,
prior_box_var=[0.1, 0.2, 0.1, 0.2],
target_box=y2,
code_type='encode_center_size')
def test_detection_api(self):
program = Program()
with program_guard(program):
x = layers.data(name='x', shape=[4], dtype='float32')
y = layers.data(name='y', shape=[4], dtype='float32')
z = layers.data(name='z', shape=[4], dtype='float32', lod_level=1)
iou = layers.iou_similarity(x=x, y=y)
bcoder = layers.box_coder(
prior_box=x,
prior_box_var=y,
target_box=z,
code_type='encode_center_size')
self.assertIsNotNone(iou)
self.assertIsNotNone(bcoder)
matched_indices, matched_dist = layers.bipartite_match(iou)
self.assertIsNotNone(matched_indices)
self.assertIsNotNone(matched_dist)
gt = layers.data(
name='gt', shape=[1, 1], dtype='int32', lod_level=1)
trg, trg_weight = layers.target_assign(
gt, matched_indices, mismatch_value=0)
self.assertIsNotNone(trg)
self.assertIsNotNone(trg_weight)
gt2 = layers.data(
name='gt2', shape=[10, 4], dtype='float32', lod_level=1)
trg, trg_weight = layers.target_assign(
gt2, matched_indices, mismatch_value=0)
self.assertIsNotNone(trg)
self.assertIsNotNone(trg_weight)
print(str(program))
def test_ssd_loss(self):
program = Program()
with program_guard(program):
pb = layers.data(
name='prior_box',
shape=[10, 4],
append_batch_size=False,
dtype='float32')
pbv = layers.data(
name='prior_box_var',
shape=[10, 4],
append_batch_size=False,
dtype='float32')
loc = layers.data(name='target_box', shape=[10, 4], dtype='float32')
scores = layers.data(name='scores', shape=[10, 21], dtype='float32')
gt_box = layers.data(
name='gt_box', shape=[4], lod_level=1, dtype='float32')
gt_label = layers.data(
name='gt_label', shape=[1], lod_level=1, dtype='int32')
loss = layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
self.assertIsNotNone(loss)
self.assertEqual(loss.shape[-1], 1)
print(str(program))
class TestPriorBox(unittest.TestCase):
def test_prior_box(self):
program = Program()
with program_guard(program):
data_shape = [3, 224, 224]
images = fluid.layers.data(
name='pixel', shape=data_shape, dtype='float32')
conv1 = fluid.layers.conv2d(images, 3, 3, 2)
box, var = layers.prior_box(
input=conv1,
image=images,
min_sizes=[100.0],
aspect_ratios=[1.],
flip=True,
clip=True)
assert len(box.shape) == 4
assert box.shape == var.shape
assert box.shape[3] == 4
class TestPriorBox2(unittest.TestCase):
def test_prior_box(self):
program = Program()
with program_guard(program):
data_shape = [None, 3, None, None]
images = fluid.data(name='pixel', shape=data_shape, dtype='float32')
conv1 = fluid.layers.conv2d(images, 3, 3, 2)
box, var = layers.prior_box(
input=conv1,
image=images,
min_sizes=[100.0],
aspect_ratios=[1.],
flip=True,
clip=True)
assert len(box.shape) == 4
assert box.shape == var.shape
assert box.shape[3] == 4
class TestDensityPriorBox(unittest.TestCase):
def test_density_prior_box(self):
program = Program()
with program_guard(program):
data_shape = [3, 224, 224]
images = fluid.layers.data(
name='pixel', shape=data_shape, dtype='float32')
conv1 = fluid.layers.conv2d(images, 3, 3, 2)
box, var = layers.density_prior_box(
input=conv1,
image=images,
densities=[3, 4],
fixed_sizes=[50., 60.],
fixed_ratios=[1.0],
clip=True)
assert len(box.shape) == 4
assert box.shape == var.shape
assert box.shape[-1] == 4
class TestAnchorGenerator(unittest.TestCase):
def test_anchor_generator(self):
data_shape = [3, 224, 224]
images = fluid.layers.data(
name='pixel', shape=data_shape, dtype='float32')
conv1 = fluid.layers.conv2d(images, 3, 3, 2)
anchor, var = fluid.layers.anchor_generator(
input=conv1,
anchor_sizes=[64, 128, 256, 512],
aspect_ratios=[0.5, 1.0, 2.0],
variance=[0.1, 0.1, 0.2, 0.2],
stride=[16.0, 16.0],
offset=0.5)
assert len(anchor.shape) == 4
assert anchor.shape == var.shape
assert anchor.shape[3] == 4
class TestGenerateProposalLabels(unittest.TestCase):
def test_generate_proposal_labels(self):
program = Program()
with program_guard(program):
rpn_rois = layers.data(
name='rpn_rois',
shape=[4, 4],
dtype='float32',
lod_level=1,
append_batch_size=False)
gt_classes = layers.data(
name='gt_classes',
shape=[6],
dtype='int32',
lod_level=1,
append_batch_size=False)
is_crowd = layers.data(
name='is_crowd',
shape=[6],
dtype='int32',
lod_level=1,
append_batch_size=False)
gt_boxes = layers.data(
name='gt_boxes',
shape=[6, 4],
dtype='float32',
lod_level=1,
append_batch_size=False)
im_info = layers.data(
name='im_info',
shape=[1, 3],
dtype='float32',
lod_level=1,
append_batch_size=False)
class_nums = 5
outs = fluid.layers.generate_proposal_labels(
rpn_rois=rpn_rois,
gt_classes=gt_classes,
is_crowd=is_crowd,
gt_boxes=gt_boxes,
im_info=im_info,
batch_size_per_im=2,
fg_fraction=0.5,
fg_thresh=0.5,
bg_thresh_hi=0.5,
bg_thresh_lo=0.0,
bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
class_nums=class_nums)
rois = outs[0]
labels_int32 = outs[1]
bbox_targets = outs[2]
bbox_inside_weights = outs[3]
bbox_outside_weights = outs[4]
assert rois.shape[1] == 4
assert rois.shape[0] == labels_int32.shape[0]
assert rois.shape[0] == bbox_targets.shape[0]
assert rois.shape[0] == bbox_inside_weights.shape[0]
assert rois.shape[0] == bbox_outside_weights.shape[0]
assert bbox_targets.shape[1] == 4 * class_nums
assert bbox_inside_weights.shape[1] == 4 * class_nums
assert bbox_outside_weights.shape[1] == 4 * class_nums
class TestGenerateMaskLabels(unittest.TestCase):
def test_generate_mask_labels(self):
program = Program()
with program_guard(program):
im_info = layers.data(
name='im_info',
shape=[1, 3],
dtype='float32',
lod_level=1,
append_batch_size=False)
gt_classes = layers.data(
name='gt_classes',
shape=[2, 1],
dtype='int32',
lod_level=1,
append_batch_size=False)
is_crowd = layers.data(
name='is_crowd',
shape=[2, 1],
dtype='int32',
lod_level=1,
append_batch_size=False)
gt_segms = layers.data(
name='gt_segms',
shape=[20, 2],
dtype='float32',
lod_level=3,
append_batch_size=False)
rois = layers.data(
name='rois',
shape=[4, 4],
dtype='float32',
lod_level=1,
append_batch_size=False)
labels_int32 = layers.data(
name='labels_int32',
shape=[4, 1],
dtype='int32',
lod_level=1,
append_batch_size=False)
num_classes = 5
resolution = 14
outs = fluid.layers.generate_mask_labels(
im_info=im_info,
gt_classes=gt_classes,
is_crowd=is_crowd,
gt_segms=gt_segms,
rois=rois,
labels_int32=labels_int32,
num_classes=num_classes,
resolution=resolution)
mask_rois, roi_has_mask_int32, mask_int32 = outs
assert mask_rois.shape[1] == 4
assert mask_int32.shape[1] == num_classes * resolution * resolution
class TestMultiBoxHead(unittest.TestCase):
def test_multi_box_head(self):
data_shape = [3, 224, 224]
mbox_locs, mbox_confs, box, var = self.multi_box_head_output(data_shape)
assert len(box.shape) == 2
assert box.shape == var.shape
assert box.shape[1] == 4
assert mbox_locs.shape[1] == mbox_confs.shape[1]
def multi_box_head_output(self, data_shape):
images = fluid.layers.data(
name='pixel', shape=data_shape, dtype='float32')
conv1 = fluid.layers.conv2d(images, 3, 3, 2)
conv2 = fluid.layers.conv2d(conv1, 3, 3, 2)
conv3 = fluid.layers.conv2d(conv2, 3, 3, 2)
conv4 = fluid.layers.conv2d(conv3, 3, 3, 2)
conv5 = fluid.layers.conv2d(conv4, 3, 3, 2)
mbox_locs, mbox_confs, box, var = layers.multi_box_head(
inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
image=images,
num_classes=21,
min_ratio=20,
max_ratio=90,
aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
base_size=300,
offset=0.5,
flip=True,
clip=True)
return mbox_locs, mbox_confs, box, var
class TestDetectionMAP(unittest.TestCase):
def test_detection_map(self):
program = Program()
with program_guard(program):
detect_res = layers.data(
name='detect_res',
shape=[10, 6],
append_batch_size=False,
dtype='float32')
label = layers.data(
name='label',
shape=[10, 6],
append_batch_size=False,
dtype='float32')
map_out = detection.detection_map(detect_res, label, 21)
self.assertIsNotNone(map_out)
self.assertEqual(map_out.shape, (1, ))
print(str(program))
class TestRpnTargetAssign(unittest.TestCase):
def test_rpn_target_assign(self):
program = Program()
with program_guard(program):
bbox_pred_shape = [10, 50, 4]
cls_logits_shape = [10, 50, 2]
anchor_shape = [50, 4]
bbox_pred = layers.data(
name='bbox_pred',
shape=bbox_pred_shape,
append_batch_size=False,
dtype='float32')
cls_logits = layers.data(
name='cls_logits',
shape=cls_logits_shape,
append_batch_size=False,
dtype='float32')
anchor_box = layers.data(
name='anchor_box',
shape=anchor_shape,
append_batch_size=False,
dtype='float32')
anchor_var = layers.data(
name='anchor_var',
shape=anchor_shape,
append_batch_size=False,
dtype='float32')
gt_boxes = layers.data(
name='gt_boxes', shape=[4], lod_level=1, dtype='float32')
is_crowd = layers.data(
name='is_crowd',
shape=[1, 10],
dtype='int32',
lod_level=1,
append_batch_size=False)
im_info = layers.data(
name='im_info',
shape=[1, 3],
dtype='float32',
lod_level=1,
append_batch_size=False)
outs = layers.rpn_target_assign(
bbox_pred=bbox_pred,
cls_logits=cls_logits,
anchor_box=anchor_box,
anchor_var=anchor_var,
gt_boxes=gt_boxes,
is_crowd=is_crowd,
im_info=im_info,
rpn_batch_size_per_im=256,
rpn_straddle_thresh=0.0,
rpn_fg_fraction=0.5,
rpn_positive_overlap=0.7,
rpn_negative_overlap=0.3,
use_random=False)
pred_scores = outs[0]
pred_loc = outs[1]
tgt_lbl = outs[2]
tgt_bbox = outs[3]
bbox_inside_weight = outs[4]
self.assertIsNotNone(pred_scores)
self.assertIsNotNone(pred_loc)
self.assertIsNotNone(tgt_lbl)
self.assertIsNotNone(tgt_bbox)
self.assertIsNotNone(bbox_inside_weight)
assert pred_scores.shape[1] == 1
assert pred_loc.shape[1] == 4
assert pred_loc.shape[1] == tgt_bbox.shape[1]
print(str(program))
class TestGenerateProposals(unittest.TestCase):
def test_generate_proposals(self):
program = Program()
with program_guard(program):
data_shape = [20, 64, 64]
images = fluid.layers.data(
name='images', shape=data_shape, dtype='float32')
im_info = fluid.layers.data(
name='im_info', shape=[3], dtype='float32')
anchors, variances = fluid.layers.anchor_generator(
name='anchor_generator',
input=images,
anchor_sizes=[32, 64],
aspect_ratios=[1.0],
variance=[0.1, 0.1, 0.2, 0.2],
stride=[16.0, 16.0],
offset=0.5)
num_anchors = anchors.shape[2]
scores = fluid.layers.data(
name='scores', shape=[num_anchors, 8, 8], dtype='float32')
bbox_deltas = fluid.layers.data(
name='bbox_deltas',
shape=[num_anchors * 4, 8, 8],
dtype='float32')
rpn_rois, rpn_roi_probs = fluid.layers.generate_proposals(
name='generate_proposals',
scores=scores,
bbox_deltas=bbox_deltas,
im_info=im_info,
anchors=anchors,
variances=variances,
pre_nms_top_n=6000,
post_nms_top_n=1000,
nms_thresh=0.5,
min_size=0.1,
eta=1.0)
self.assertIsNotNone(rpn_rois)
self.assertIsNotNone(rpn_roi_probs)
print(rpn_rois.shape)
class TestYoloDetection(unittest.TestCase):
def test_yolov3_loss(self):
program = Program()
with program_guard(program):
x = layers.data(name='x', shape=[30, 7, 7], dtype='float32')
gt_box = layers.data(name='gt_box', shape=[10, 4], dtype='float32')
gt_label = layers.data(name='gt_label', shape=[10], dtype='int32')
gt_score = layers.data(name='gt_score', shape=[10], dtype='float32')
loss = layers.yolov3_loss(
x,
gt_box,
gt_label, [10, 13, 30, 13], [0, 1],
10,
0.7,
32,
gt_score=gt_score,
use_label_smooth=False)
self.assertIsNotNone(loss)
def test_yolo_box(self):
program = Program()
with program_guard(program):
x = layers.data(name='x', shape=[30, 7, 7], dtype='float32')
img_size = layers.data(name='img_size', shape=[2], dtype='int32')
boxes, scores = layers.yolo_box(x, img_size, [10, 13, 30, 13], 10,
0.01, 32)
self.assertIsNotNone(boxes)
self.assertIsNotNone(scores)
def test_yolov3_loss_with_scale(self):
program = Program()
with program_guard(program):
x = layers.data(name='x', shape=[30, 7, 7], dtype='float32')
gt_box = layers.data(name='gt_box', shape=[10, 4], dtype='float32')
gt_label = layers.data(name='gt_label', shape=[10], dtype='int32')
gt_score = layers.data(name='gt_score', shape=[10], dtype='float32')
loss = layers.yolov3_loss(
x,
gt_box,
gt_label, [10, 13, 30, 13], [0, 1],
10,
0.7,
32,
gt_score=gt_score,
use_label_smooth=False,
scale_x_y=1.2)
self.assertIsNotNone(loss)
def test_yolo_box_with_scale(self):
program = Program()
with program_guard(program):
x = layers.data(name='x', shape=[30, 7, 7], dtype='float32')
img_size = layers.data(name='img_size', shape=[2], dtype='int32')
boxes, scores = layers.yolo_box(
x, img_size, [10, 13, 30, 13], 10, 0.01, 32, scale_x_y=1.2)
self.assertIsNotNone(boxes)
self.assertIsNotNone(scores)
class TestBoxClip(unittest.TestCase):
def test_box_clip(self):
program = Program()
with program_guard(program):
input_box = layers.data(
name='input_box', shape=[7, 4], dtype='float32', lod_level=1)
im_info = layers.data(name='im_info', shape=[3], dtype='float32')
out = layers.box_clip(input_box, im_info)
self.assertIsNotNone(out)
class TestMulticlassNMS(unittest.TestCase):
def test_multiclass_nms(self):
program = Program()
with program_guard(program):
bboxes = layers.data(
name='bboxes', shape=[-1, 10, 4], dtype='float32')
scores = layers.data(name='scores', shape=[-1, 10], dtype='float32')
output = layers.multiclass_nms(bboxes, scores, 0.3, 400, 200, 0.7)
self.assertIsNotNone(output)
def test_multiclass_nms_error(self):
program = Program()
with program_guard(program):
bboxes1 = fluid.data(
name='bboxes1', shape=[10, 10, 4], dtype='int32')
scores1 = fluid.data(
name='scores1', shape=[10, 10], dtype='float32')
bboxes2 = fluid.data(
name='bboxes2', shape=[10, 10, 4], dtype='float32')
scores2 = fluid.data(name='scores2', shape=[10, 10], dtype='int32')
self.assertRaises(
TypeError,
layers.multiclass_nms,
bboxes=bboxes1,
scores=scores1,
score_threshold=0.5,
nms_top_k=400,
keep_top_k=200)
self.assertRaises(
TypeError,
layers.multiclass_nms,
bboxes=bboxes2,
scores=scores2,
score_threshold=0.5,
nms_top_k=400,
keep_top_k=200)
class TestMulticlassNMS2(unittest.TestCase):
def test_multiclass_nms2(self):
program = Program()
with program_guard(program):
bboxes = layers.data(
name='bboxes', shape=[-1, 10, 4], dtype='float32')
scores = layers.data(name='scores', shape=[-1, 10], dtype='float32')
output = fluid.contrib.multiclass_nms2(bboxes, scores, 0.3, 400,
200, 0.7)
output2, index = fluid.contrib.multiclass_nms2(
bboxes, scores, 0.3, 400, 200, 0.7, return_index=True)
self.assertIsNotNone(output)
self.assertIsNotNone(output2)
self.assertIsNotNone(index)
class TestCollectFpnPropsals(unittest.TestCase):
def test_collect_fpn_proposals(self):
program = Program()
with program_guard(program):
multi_bboxes = []
multi_scores = []
for i in range(4):
bboxes = layers.data(
name='rois' + str(i),
shape=[10, 4],
dtype='float32',
lod_level=1,
append_batch_size=False)
scores = layers.data(
name='scores' + str(i),
shape=[10, 1],
dtype='float32',
lod_level=1,
append_batch_size=False)
multi_bboxes.append(bboxes)
multi_scores.append(scores)
fpn_rois = layers.collect_fpn_proposals(multi_bboxes, multi_scores,
2, 5, 10)
self.assertIsNotNone(fpn_rois)
def test_collect_fpn_proposals_error(self):
def generate_input(bbox_type, score_type, name):
multi_bboxes = []
multi_scores = []
for i in range(4):
bboxes = fluid.data(
name='rois' + name + str(i),
shape=[10, 4],
dtype=bbox_type,
lod_level=1)
scores = fluid.data(
name='scores' + name + str(i),
shape=[10, 1],
dtype=score_type,
lod_level=1)
multi_bboxes.append(bboxes)
multi_scores.append(scores)
return multi_bboxes, multi_scores
program = Program()
with program_guard(program):
bbox1 = fluid.data(
name='rois', shape=[5, 10, 4], dtype='float32', lod_level=1)
score1 = fluid.data(
name='scores', shape=[5, 10, 1], dtype='float32', lod_level=1)
bbox2, score2 = generate_input('int32', 'float32', '2')
self.assertRaises(
TypeError,
layers.collect_fpn_proposals,
multi_rois=bbox1,
multi_scores=score1,
min_level=2,
max_level=5,
post_nms_top_n=2000)
self.assertRaises(
TypeError,
layers.collect_fpn_proposals,
multi_rois=bbox2,
multi_scores=score2,
min_level=2,
max_level=5,
post_nms_top_n=2000)
class TestDistributeFpnProposals(unittest.TestCase):
def test_distribute_fpn_proposals(self):
program = Program()
with program_guard(program):
fpn_rois = fluid.layers.data(
name='data', shape=[4], dtype='float32', lod_level=1)
multi_rois, restore_ind = layers.distribute_fpn_proposals(
fpn_rois=fpn_rois,
min_level=2,
max_level=5,
refer_level=4,
refer_scale=224)
self.assertIsNotNone(multi_rois)
self.assertIsNotNone(restore_ind)
def test_distribute_fpn_proposals_error(self):
program = Program()
with program_guard(program):
fpn_rois = fluid.data(
name='data_error', shape=[10, 4], dtype='int32', lod_level=1)
self.assertRaises(
TypeError,
layers.distribute_fpn_proposals,
fpn_rois=fpn_rois,
min_level=2,
max_level=5,
refer_level=4,
refer_scale=224)
class TestBoxDecoderAndAssign(unittest.TestCase):
def test_box_decoder_and_assign(self):
program = Program()
with program_guard(program):
pb = fluid.data(name='prior_box', shape=[None, 4], dtype='float32')
pbv = fluid.data(name='prior_box_var', shape=[4], dtype='float32')
loc = fluid.data(
name='target_box', shape=[None, 4 * 81], dtype='float32')
scores = fluid.data(
name='scores', shape=[None, 81], dtype='float32')
decoded_box, output_assign_box = fluid.layers.box_decoder_and_assign(
pb, pbv, loc, scores, 4.135)
self.assertIsNotNone(decoded_box)
self.assertIsNotNone(output_assign_box)
def test_box_decoder_and_assign_error(self):
def generate_input(pb_type, pbv_type, loc_type, score_type, name):
pb = fluid.data(
name='prior_box' + name, shape=[None, 4], dtype=pb_type)
pbv = fluid.data(
name='prior_box_var' + name, shape=[4], dtype=pbv_type)
loc = fluid.data(
name='target_box' + name, shape=[None, 4 * 81], dtype=loc_type)
scores = fluid.data(
name='scores' + name, shape=[None, 81], dtype=score_type)
return pb, pbv, loc, scores
program = Program()
with program_guard(program):
pb1, pbv1, loc1, scores1 = generate_input('int32', 'float32',
'float32', 'float32', '1')
pb2, pbv2, loc2, scores2 = generate_input('float32', 'float32',
'int32', 'float32', '2')
pb3, pbv3, loc3, scores3 = generate_input('float32', 'float32',
'float32', 'int32', '3')
self.assertRaises(
TypeError,
layers.box_decoder_and_assign,
prior_box=pb1,
prior_box_var=pbv1,
target_box=loc1,
box_score=scores1,
box_clip=4.0)
self.assertRaises(
TypeError,
layers.box_decoder_and_assign,
prior_box=pb2,
prior_box_var=pbv2,
target_box=loc2,
box_score=scores2,
box_clip=4.0)
self.assertRaises(
TypeError,
layers.box_decoder_and_assign,
prior_box=pb3,
prior_box_var=pbv3,
target_box=loc3,
box_score=scores3,
box_clip=4.0)
if __name__ == '__main__':
unittest.main()