You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_adagrad_op.py

193 lines
6.0 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle.fluid.core as core
from paddle.fluid.op import Operator
from op_test import OpTest
import math
class TestAdagradOp1(OpTest):
''' Test Adagrad operator with explicit attributes
'''
def setUp(self):
self.op_type = "adagrad"
param = np.random.random((123, 321)).astype("float32")
grad = np.random.random((123, 321)).astype("float32")
moment = np.zeros((123, 321)).astype("float32")
lr = 0.01
epsilon = 1e-8
self.inputs = {
'Param': param,
'Grad': grad,
'Moment': moment,
'LearningRate': np.array([lr]).astype("float32")
}
self.attrs = {'epsilon': epsilon}
moment_out = moment + grad * grad
param_out = param - lr * grad / (np.sqrt(moment_out) + epsilon)
self.outputs = {'ParamOut': param_out, 'MomentOut': moment_out}
def test_check_output(self):
self.check_output()
class TestAdagradOp2(OpTest):
''' Test Adagrad operator with default attributes
'''
def setUp(self):
self.op_type = "adagrad"
param = np.random.random((123, 321)).astype("float32")
grad = np.random.random((123, 321)).astype("float32")
moment = np.zeros((123, 321)).astype("float32")
lr = 0.01
epsilon = 1e-6
self.inputs = {
'Param': param,
'Grad': grad,
'Moment': moment,
'LearningRate': np.array([lr]).astype("float32")
}
self.attrs = {'epsilon': epsilon}
moment_out = moment + grad * grad
param_out = param - lr * grad / (np.sqrt(moment_out) + epsilon)
self.outputs = {'ParamOut': param_out, 'MomentOut': moment_out}
def test_check_output(self):
self.check_output()
class TestSparseAdagradOp(unittest.TestCase):
def check_with_place(self, place):
scope = core.Scope()
# create and initialize Grad Variable
height = 10
rows = [0, 4, 7, 4]
row_numel = 12
grad_selected_rows = scope.var('Grad').get_selected_rows()
grad_selected_rows.set_height(height)
grad_selected_rows.set_rows(rows)
np_array = np.ones((len(rows), row_numel)).astype("float32")
np_array[0, 0] = 2.0
np_array[2, 8] = 4.0
grad_tensor = grad_selected_rows.get_tensor()
grad_tensor.set(np_array, place)
# create and initialize Param Variable
param = scope.var('Param').get_tensor()
param_array = np.full((height, row_numel), 5.0).astype("float32")
param.set(param_array, place)
# create and initialize LeraningRate Variable
lr = scope.var('LearningRate').get_tensor()
lr_array = np.full((1), 2.0).astype("float32")
lr.set(lr_array, place)
# create and initialize moment Variable
moment = scope.var('Moment').get_tensor()
moment_np_array = np.full((height, row_numel), 2.0).astype("float32")
moment.set(moment_np_array, place)
# create and run sgd operator
adagrad_op = Operator(
"adagrad",
Param='Param',
Grad='Grad',
ParamOut='Param',
Moment='Moment',
MomentOut='Moment',
LearningRate='LearningRate',
epsilon=2.0)
adagrad_op.run(scope, place)
# get and compare moment result
moment_result_array = np.array(moment)
self.assertAlmostEqual(6.0, moment_result_array[rows[0], 0])
self.assertAlmostEqual(3.0, moment_result_array[rows[0], 2])
self.assertAlmostEqual(2.0, moment_result_array[1, 0])
# 2.0 + (1.0 + 1.0)^2
self.assertAlmostEqual(6.0, moment_result_array[rows[1], 10])
self.assertAlmostEqual(6.0, moment_result_array[rows[3], 4])
self.assertAlmostEqual(2.0, moment_result_array[5, 8])
self.assertAlmostEqual(3.0, moment_result_array[rows[2], 1])
self.assertAlmostEqual(18.0, moment_result_array[rows[2], 8])
# get and compare param result
result_array = np.array(param)
def get_out(param, lr, grad, m, epsilon):
return param - lr * grad / (math.sqrt(m) + epsilon)
self.assertAlmostEqual(
get_out(5.0, 2.0, 2.0, 6.0, 2.0),
result_array[rows[0], 0],
places=5)
self.assertAlmostEqual(
get_out(5.0, 2.0, 1.0, 3.0, 2.0),
result_array[rows[0], 2],
places=5)
self.assertAlmostEqual(
get_out(5.0, 2.0, 0.0, 2.0, 2.0), result_array[1, 0], places=5)
# grad_merge = 1.0 + 1.0
# m = 6.0
self.assertAlmostEqual(
get_out(5.0, 2.0, 2.0, 6.0, 2.0),
result_array[rows[1], 10],
places=5)
self.assertAlmostEqual(
get_out(5.0, 2.0, 0.0, 2.0, 2.0), result_array[5, 8], places=5)
self.assertAlmostEqual(
get_out(5.0, 2.0, 1.0, 3.0, 2.0),
result_array[rows[2], 1],
places=5)
self.assertAlmostEqual(
get_out(5.0, 2.0, 4.0, 18.0, 2.0),
result_array[rows[2], 8],
places=5)
def test_sparse_adagrad(self):
places = [core.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(core.CUDAPlace(0))
for place in places:
self.check_with_place(place)
if __name__ == "__main__":
unittest.main()