You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_basic_rnn_name.py

112 lines
4.0 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
from paddle.fluid.contrib.layers import basic_gru, basic_lstm
from paddle.fluid.executor import Executor
from paddle.fluid import framework
from test_imperative_base import new_program_scope
import numpy as np
class TestBasicGRUApiName(unittest.TestCase):
def setUp(self):
self.name_set = set([
"test1_fw_w_0_gate", "test1_fw_w_0_candidate", "test1_fw_b_0_gate",
"test1_fw_b_0_candidate", "test1_bw_w_0_gate",
"test1_bw_w_0_candidate", "test1_bw_b_0_gate",
"test1_bw_b_0_candidate"
])
def test_name(self):
batch_size = 20
input_size = 128
hidden_size = 256
num_layers = 1
dropout = 0.5
bidirectional = True
batch_first = False
with new_program_scope():
input = layers.data(
name="input",
shape=[-1, batch_size, input_size],
dtype='float32')
pre_hidden = layers.data(
name="pre_hidden", shape=[-1, hidden_size], dtype='float32')
sequence_length = layers.data(
name="sequence_length", shape=[-1], dtype='int32')
rnn_out, last_hidden = basic_gru( input, pre_hidden, hidden_size, num_layers = num_layers, \
sequence_length = sequence_length, dropout_prob=dropout, bidirectional = bidirectional, \
batch_first = batch_first, param_attr=fluid.ParamAttr( name ="test1"), bias_attr=fluid.ParamAttr( name="test1"), name="basic_gru")
var_list = fluid.io.get_program_parameter(
fluid.default_main_program())
for var in var_list:
self.assertTrue(var.name in self.name_set)
class TestBasicLSTMApiName(unittest.TestCase):
def setUp(self):
self.name_set = set([
"test1_fw_w_0", "test1_fw_b_0", "test1_fw_w_1", "test1_fw_b_1",
"test1_bw_w_0", "test1_bw_b_0", "test1_bw_w_1", "test1_bw_b_1"
])
def test_name(self):
batch_size = 20
input_size = 128
hidden_size = 256
num_layers = 2
dropout = 0.5
bidirectional = True
batch_first = False
with new_program_scope():
input = layers.data(
name="input",
shape=[-1, batch_size, input_size],
dtype='float32')
pre_hidden = layers.data(
name="pre_hidden", shape=[-1, hidden_size], dtype='float32')
pre_cell = layers.data(
name="pre_cell", shape=[-1, hidden_size], dtype='float32')
sequence_length = layers.data(
name="sequence_length", shape=[-1], dtype='int32')
rnn_out, last_hidden, last_cell = basic_lstm( input, pre_hidden, pre_cell, \
hidden_size, num_layers = num_layers, \
sequence_length = sequence_length, dropout_prob=dropout, bidirectional = bidirectional, \
param_attr=fluid.ParamAttr( name ="test1"), bias_attr=fluid.ParamAttr( name = "test1"), \
batch_first = batch_first)
var_list = fluid.io.get_program_parameter(
fluid.default_main_program())
for var in var_list:
self.assertTrue(var.name in self.name_set)
if __name__ == '__main__':
unittest.main()