You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
107 lines
3.8 KiB
107 lines
3.8 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
import numpy as np
|
|
import random
|
|
from op_test import OpTest
|
|
import paddle.fluid as fluid
|
|
from paddle.fluid import Program, program_guard
|
|
from op_test import OpTest, skip_check_grad_ci
|
|
import paddle.fluid.core as core
|
|
|
|
|
|
def np_cal_batchfc(input, w, bias):
|
|
slot_pairs_num, batch_size, in_dim = input.shape
|
|
_, _, out_dim = w.shape
|
|
res = np.zeros((slot_pairs_num, batch_size, out_dim))
|
|
for slot in range(slot_pairs_num):
|
|
res[slot, :] = np.dot(input[slot, :], w[slot, :])
|
|
for slot in range(slot_pairs_num):
|
|
for bindx in range(out_dim):
|
|
res[slot, :, bindx] += bias[slot, bindx]
|
|
return res
|
|
|
|
|
|
class TestBatchFCOp(OpTest):
|
|
def config(self):
|
|
self.slot_pairs_num = 10
|
|
self.batch_size = 5
|
|
self.in_dim = 10
|
|
self.out_dim = 12
|
|
self.dtype = "float64"
|
|
|
|
def setUp(self):
|
|
self.config()
|
|
self.input = np.random.random((self.slot_pairs_num, self.batch_size,
|
|
self.in_dim)).astype(self.dtype)
|
|
self.w = np.random.random((self.slot_pairs_num, self.in_dim,
|
|
self.out_dim)).astype(self.dtype)
|
|
self.bias = np.random.random((self.slot_pairs_num,
|
|
self.out_dim)).astype(self.dtype)
|
|
self.op_type = "batch_fc"
|
|
np_out = np_cal_batchfc(self.input, self.w, self.bias)
|
|
np_out = np_out.astype(self.dtype)
|
|
self.inputs = {"Input": self.input, "W": self.w, "Bias": self.bias}
|
|
self.outputs = {"Out": np_out}
|
|
|
|
def test_check_output_gpu(self):
|
|
if core.is_compiled_with_cuda():
|
|
self.check_output_with_place(core.CUDAPlace(0))
|
|
|
|
def test_check_grad_gpu(self):
|
|
if core.is_compiled_with_cuda():
|
|
self.check_grad_with_place(
|
|
core.CUDAPlace(0), ["Bias", "W", "Input"], "Out")
|
|
|
|
|
|
class TestBatchFCOp1(OpTest):
|
|
def config(self):
|
|
self.slot_pairs_num = 10
|
|
self.batch_size = 5
|
|
self.in_dim = 10
|
|
self.out_dim = 12
|
|
self.dtype = "float64"
|
|
|
|
def setUp(self):
|
|
self.config()
|
|
self.input = np.random.random((self.slot_pairs_num, self.batch_size,
|
|
self.in_dim)).astype(self.dtype)
|
|
self.w = np.random.random((self.slot_pairs_num, self.in_dim,
|
|
self.out_dim)).astype(self.dtype)
|
|
self.bias = np.random.random((self.slot_pairs_num,
|
|
self.out_dim)).astype(self.dtype)
|
|
self.op_type = "batch_fc"
|
|
np_out = np_cal_batchfc(self.input, self.w, self.bias)
|
|
np_out = np_out.astype(self.dtype)
|
|
self.inputs = {"Input": self.input, "W": self.w, "Bias": self.bias}
|
|
self.outputs = {"Out": np_out}
|
|
|
|
def test_check_output_cpu(self):
|
|
try:
|
|
self.check_output_with_place(place=core.CPUPlace())
|
|
except:
|
|
print("do not support cpu test, skip")
|
|
|
|
def test_check_grad_cpu(self):
|
|
try:
|
|
self.check_grad_with_place(core.CPUPlace(), ["Bias", "W", "Input"],
|
|
"Out")
|
|
except:
|
|
print("do not support cpu test, skip")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|