You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_batch_fc_op.py

107 lines
3.8 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import random
from op_test import OpTest
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
from op_test import OpTest, skip_check_grad_ci
import paddle.fluid.core as core
def np_cal_batchfc(input, w, bias):
slot_pairs_num, batch_size, in_dim = input.shape
_, _, out_dim = w.shape
res = np.zeros((slot_pairs_num, batch_size, out_dim))
for slot in range(slot_pairs_num):
res[slot, :] = np.dot(input[slot, :], w[slot, :])
for slot in range(slot_pairs_num):
for bindx in range(out_dim):
res[slot, :, bindx] += bias[slot, bindx]
return res
class TestBatchFCOp(OpTest):
def config(self):
self.slot_pairs_num = 10
self.batch_size = 5
self.in_dim = 10
self.out_dim = 12
self.dtype = "float64"
def setUp(self):
self.config()
self.input = np.random.random((self.slot_pairs_num, self.batch_size,
self.in_dim)).astype(self.dtype)
self.w = np.random.random((self.slot_pairs_num, self.in_dim,
self.out_dim)).astype(self.dtype)
self.bias = np.random.random((self.slot_pairs_num,
self.out_dim)).astype(self.dtype)
self.op_type = "batch_fc"
np_out = np_cal_batchfc(self.input, self.w, self.bias)
np_out = np_out.astype(self.dtype)
self.inputs = {"Input": self.input, "W": self.w, "Bias": self.bias}
self.outputs = {"Out": np_out}
def test_check_output_gpu(self):
if core.is_compiled_with_cuda():
self.check_output_with_place(core.CUDAPlace(0))
def test_check_grad_gpu(self):
if core.is_compiled_with_cuda():
self.check_grad_with_place(
core.CUDAPlace(0), ["Bias", "W", "Input"], "Out")
class TestBatchFCOp1(OpTest):
def config(self):
self.slot_pairs_num = 10
self.batch_size = 5
self.in_dim = 10
self.out_dim = 12
self.dtype = "float64"
def setUp(self):
self.config()
self.input = np.random.random((self.slot_pairs_num, self.batch_size,
self.in_dim)).astype(self.dtype)
self.w = np.random.random((self.slot_pairs_num, self.in_dim,
self.out_dim)).astype(self.dtype)
self.bias = np.random.random((self.slot_pairs_num,
self.out_dim)).astype(self.dtype)
self.op_type = "batch_fc"
np_out = np_cal_batchfc(self.input, self.w, self.bias)
np_out = np_out.astype(self.dtype)
self.inputs = {"Input": self.input, "W": self.w, "Bias": self.bias}
self.outputs = {"Out": np_out}
def test_check_output_cpu(self):
try:
self.check_output_with_place(place=core.CPUPlace())
except:
print("do not support cpu test, skip")
def test_check_grad_cpu(self):
try:
self.check_grad_with_place(core.CPUPlace(), ["Bias", "W", "Input"],
"Out")
except:
print("do not support cpu test, skip")
if __name__ == "__main__":
unittest.main()