You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
62 lines
2.1 KiB
62 lines
2.1 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import paddle.fluid as fluid
|
|
from paddle.fluid.framework import default_main_program
|
|
from paddle.fluid.entry_attr import ProbabilityEntry, CountFilterEntry
|
|
|
|
|
|
class EntryAttrChecks(unittest.TestCase):
|
|
def embedding_layer(self):
|
|
prog = fluid.Program()
|
|
scope = fluid.core.Scope()
|
|
|
|
with fluid.scope_guard(scope):
|
|
with fluid.program_guard(prog):
|
|
input = fluid.layers.data(
|
|
name="dnn_data",
|
|
shape=[-1, 1],
|
|
dtype="int64",
|
|
lod_level=1,
|
|
append_batch_size=False)
|
|
emb = fluid.layers.embedding(
|
|
input=input,
|
|
size=[100, 10],
|
|
is_sparse=True,
|
|
is_distributed=True,
|
|
param_attr=fluid.ParamAttr(name="deep_embedding"))
|
|
pool = fluid.layers.sequence_pool(input=emb, pool_type="sum")
|
|
predict = fluid.layers.fc(input=pool, size=2, act='softmax')
|
|
|
|
block = prog.global_block()
|
|
for op in block.ops:
|
|
if op.type == "lookup_table":
|
|
is_sparse = op.attr("is_sparse")
|
|
is_distributed = op.attr("is_distributed")
|
|
|
|
self.assertFalse(is_distributed)
|
|
self.assertTrue(is_sparse)
|
|
|
|
|
|
class TestEntryAttrs(EntryAttrChecks):
|
|
def test_embedding_layer(self):
|
|
self.embedding_layer()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|