You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_fleet_checkpoint.py

111 lines
3.7 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import paddle.fluid as fluid
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
from paddle.fluid.incubate.fleet.collective import CollectiveOptimizer, fleet, TrainStatus
import os
import sys
from paddle.fluid.incubate.fleet.utils.fs import LocalFS
from paddle.fluid.incubate.fleet.utils.hdfs import HDFSClient
class FleetTest(unittest.TestCase):
def _test_checkpoint(self, fs, dir_path):
file_name = "persistables"
os.environ["TRAINING_ROLE"] = "TRAINER"
os.environ["PADDLE_TRAINER_ID"] = "0"
os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:6070"
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
label = fluid.data(name='label', shape=[None, 1], dtype='int64')
feeder = fluid.DataFeeder(
feed_list=[image, label], place=fluid.CPUPlace())
predict = fluid.layers.fc(input=image, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=predict, label=label)
avg_loss = fluid.layers.mean(loss)
optimizer = fluid.optimizer.AdamOptimizer(learning_rate=0.001)
dist_optimizer = fleet.distributed_optimizer(optimizer)
dist_optimizer.minimize(avg_loss)
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
status = TrainStatus(2)
fleet.save_checkpoint(exe, dir_path, train_status=status, fs=fs)
n1 = fleet._get_last_checkpoint_no(dir_path, fs=fs)
status2 = fleet.load_checkpoint(exe, dir_path, trainer_id=0, fs=fs)
self.assertEqual(status2, status)
fleet.save_checkpoint(exe, dir_path, train_status=status, fs=fs)
n2 = fleet._get_last_checkpoint_no(dir_path, fs=fs)
self.assertEqual(n2, n1 + 1)
fleet.clean_redundant_checkpoints(dir_path, fs=fs)
# unnormal
# test remain_all_checkpoint
fleet.save_checkpoint(
exe,
dir_path,
train_status=status,
fs=fs,
remain_all_checkpoint=False)
# can't save under a file
fs = LocalFS()
cache_path = "./.load_cache"
fs.touch(cache_path)
try:
fleet.save_checkpoint(
exe,
dir_path,
train_status=status,
fs=fs,
cache_path=cache_path)
self.assertFalse(True)
except:
pass
# can't load under a file
try:
status2 = fleet.load_checkpoint(
exe, dir_path, trainer_id=0, fs=fs, cache_path=cache_path)
self.assertFalse(True)
except:
pass
fs.delete(cache_path)
def test_hdfs_checkpoint(self):
fs = HDFSClient("/usr/local/hadoop-2.7.7", None)
dir_path = "./checkpoint_test_hdfs"
self._test_checkpoint(fs, os.path.abspath(dir_path))
def test_local_checkpoint(self):
fs = LocalFS()
dir_path = "./checkpoint_test_local"
self._test_checkpoint(fs, dir_path)
if __name__ == '__main__':
unittest.main()