You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
104 lines
3.4 KiB
104 lines
3.4 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle/fluid/inference/analysis/analyzer.h"
|
|
#include <gflags/gflags.h>
|
|
#include <glog/logging.h> // use glog instead of PADDLE_ENFORCE to avoid importing other paddle header files.
|
|
#include <gtest/gtest.h>
|
|
#include "paddle/fluid/framework/ir/pass.h"
|
|
#include "paddle/fluid/inference/analysis/ut_helper.h"
|
|
#include "paddle/fluid/inference/api/paddle_inference_api.h"
|
|
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
|
|
#include "paddle/fluid/inference/api/timer.h"
|
|
|
|
DEFINE_string(infer_model, "", "Directory of the inference model.");
|
|
DEFINE_string(infer_data, "", "Path of the dataset.");
|
|
DEFINE_int32(batch_size, 1, "batch size.");
|
|
DEFINE_int32(repeat, 1, "How many times to repeat run.");
|
|
|
|
namespace paddle {
|
|
|
|
template <typename T>
|
|
std::string to_string(const std::vector<T> &vec) {
|
|
std::stringstream ss;
|
|
for (const auto &c : vec) {
|
|
ss << c << " ";
|
|
}
|
|
return ss.str();
|
|
}
|
|
|
|
void PrintTime(const double latency, const int bs, const int repeat) {
|
|
LOG(INFO) << "===========profile result===========";
|
|
LOG(INFO) << "batch_size: " << bs << ", repeat: " << repeat
|
|
<< ", avg latency: " << latency / repeat << "ms";
|
|
LOG(INFO) << "=====================================";
|
|
}
|
|
|
|
void Main(int batch_size) {
|
|
// Three sequence inputs.
|
|
std::vector<PaddleTensor> input_slots(1);
|
|
// one batch starts
|
|
// data --
|
|
int64_t data0[] = {0, 1, 2};
|
|
for (auto &input : input_slots) {
|
|
input.data.Reset(data0, sizeof(data0));
|
|
input.shape = std::vector<int>({3, 1});
|
|
// dtype --
|
|
input.dtype = PaddleDType::INT64;
|
|
// LoD --
|
|
input.lod = std::vector<std::vector<size_t>>({{0, 3}});
|
|
}
|
|
|
|
// shape --
|
|
// Create Predictor --
|
|
AnalysisConfig config;
|
|
config.model_dir = FLAGS_infer_model;
|
|
config.use_gpu = false;
|
|
config.enable_ir_optim = true;
|
|
config.ir_passes.push_back("fc_lstm_fuse_pass");
|
|
auto predictor =
|
|
CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
|
|
config);
|
|
|
|
inference::Timer timer;
|
|
double sum = 0;
|
|
std::vector<PaddleTensor> output_slots;
|
|
for (int i = 0; i < FLAGS_repeat; i++) {
|
|
timer.tic();
|
|
CHECK(predictor->Run(input_slots, &output_slots));
|
|
sum += timer.toc();
|
|
}
|
|
PrintTime(sum, batch_size, FLAGS_repeat);
|
|
|
|
// Get output
|
|
LOG(INFO) << "get outputs " << output_slots.size();
|
|
|
|
for (auto &output : output_slots) {
|
|
LOG(INFO) << "output.shape: " << to_string(output.shape);
|
|
// no lod ?
|
|
CHECK_EQ(output.lod.size(), 0UL);
|
|
LOG(INFO) << "output.dtype: " << output.dtype;
|
|
std::stringstream ss;
|
|
for (int i = 0; i < 5; i++) {
|
|
ss << static_cast<float *>(output.data.data())[i] << " ";
|
|
}
|
|
LOG(INFO) << "output.data summary: " << ss.str();
|
|
// one batch ends
|
|
}
|
|
}
|
|
|
|
TEST(text_classification, basic) { Main(FLAGS_batch_size); }
|
|
|
|
} // namespace paddle
|