You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
212 lines
7.7 KiB
212 lines
7.7 KiB
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/utils/Logging.h"
|
|
#include "paddle/utils/Stat.h"
|
|
#include "DeConv3DLayer.h"
|
|
|
|
namespace paddle {
|
|
|
|
REGISTER_LAYER(deconv3d, DeConv3DLayer);
|
|
|
|
#define DECONV_OUTPUT_SIZE(IN_SIZE, STRID, PAD, KSIZE) \
|
|
(((IN_SIZE) - 1) * (STRID) - 2 * (PAD) + (KSIZE))
|
|
|
|
bool DeConv3DLayer::init(const LayerMap &layerMap,
|
|
const ParameterMap ¶meterMap) {
|
|
if (!ConvBaseLayer::init(layerMap, parameterMap)) return false;
|
|
// for Deconv, the dimension of Kernel is
|
|
// channel * output * depth * height * weigth
|
|
// Matrix storage format: (output * depth * height * weigth) x channel
|
|
for (int index = 0; index < config_.inputs().size(); ++index) {
|
|
M_.push_back(filterChannels_[index]);
|
|
K_.push_back(
|
|
filterPixels_[index] * (numFilters_/groups_[index]));
|
|
weights_[index]->getW()->reshape(
|
|
filterPixels_[index] * numFilters_,
|
|
filterChannels_[index]);
|
|
weights_[index]->getWGrad()->reshape(
|
|
filterPixels_[index] * numFilters_,
|
|
filterChannels_[index]);
|
|
}
|
|
biases_->getWGrad()->reshape(
|
|
biases_->getWGrad()->width_, biases_->getWGrad()->height_);
|
|
biases_->getW()->reshape(
|
|
biases_->getW()->width_, biases_->getW()->height_);
|
|
CHECK(inputLayers_.size() == parameters_.size());
|
|
return true;
|
|
}
|
|
|
|
|
|
size_t DeConv3DLayer::getSize() {
|
|
CHECK_NE(inputLayers_.size(), 0UL);
|
|
// imgSizeH_.clear();
|
|
// imgSizeW_.clear();
|
|
// imgSizeD_.clear();
|
|
outputH_.clear();
|
|
outputW_.clear();
|
|
outputD_.clear();
|
|
N_.clear();
|
|
No_.clear();
|
|
size_t layerSize = 0;
|
|
for (size_t i = 0; i < inputLayers_.size(); ++i) {
|
|
// imgSizeH_.push_back(inputLayers_[i]->getOutput().getFrameHeight());
|
|
// imgSizeW_.push_back(inputLayers_[i]->getOutput().getFrameWidth());
|
|
// imgSizeD_.push_back(inputLayers_[i]->getOutput().getFrameDepth());
|
|
outputW_.push_back(
|
|
DECONV_OUTPUT_SIZE(
|
|
imgSizeW_[i], stride_[i],
|
|
padding_[i], filterSize_[i]));
|
|
outputH_.push_back(
|
|
DECONV_OUTPUT_SIZE(
|
|
imgSizeH_[i], strideY_[i],
|
|
paddingY_[i], filterSizeY_[i]));
|
|
outputD_.push_back(
|
|
DECONV_OUTPUT_SIZE(
|
|
imgSizeD_[i], strideZ_[i],
|
|
paddingZ_[i], filterSizeZ_[i]));
|
|
No_.push_back(outputD_[i] * outputH_[i] * outputW_[i]);
|
|
N_.push_back(imgSizeD_[i] * imgSizeH_[i] * imgSizeW_[i]);
|
|
CHECK(layerSize == 0 || N_[i] * size_t(numFilters_) == layerSize);
|
|
layerSize += No_[i] * numFilters_;
|
|
}
|
|
getOutput().setFrameHeight(outputH_[0]);
|
|
getOutput().setFrameWidth(outputW_[0]);
|
|
getOutput().setFrameDepth(outputD_[0]);
|
|
return layerSize;
|
|
}
|
|
|
|
void DeConv3DLayer::forward(PassType passType) {
|
|
Layer::forward(passType);
|
|
int batchSize = inputLayers_[0]->getOutputValue()->getHeight();
|
|
int outWidth = getSize();
|
|
resetOutput(batchSize, outWidth);
|
|
const MatrixPtr outMat = getOutputValue();
|
|
|
|
for (size_t i = 0; i != inputLayers_.size(); ++i) {
|
|
REGISTER_TIMER_INFO("FwdDeConv3D", getName().c_str());
|
|
const MatrixPtr& inMat = getInputValue(i);
|
|
int width = inMat->getWidth();
|
|
int M = M_[i];
|
|
int N = N_[i];
|
|
int K = K_[i];
|
|
MatrixPtr wMat = weights_[i]->getW();
|
|
Matrix::resizeOrCreate(colBuf_, K * groups_[i] , N, false, useGpu_);
|
|
|
|
for (int n = 0; n < batchSize; ++n) {
|
|
real *inData = inMat->getData() + n * width;
|
|
real *colBufData = colBuf_->getData();
|
|
for (int g = 0; g < groups_[i]; g++) {
|
|
MatrixPtr wMatSub = wMat->subMatrix(g * K, K);
|
|
MatrixPtr inMatSub =
|
|
Matrix::create(inData, M, N, false, useGpu_);
|
|
MatrixPtr colBufDataSub =
|
|
Matrix::create(colBufData, K, N, false, useGpu_);
|
|
colBufDataSub->mul(*wMatSub, *inMatSub, 1.0, 0.0);
|
|
colBufData += K * N;
|
|
inData += M * N;
|
|
}
|
|
colBuf_->col2Vol(outMat->getData()+ n * outMat->getWidth(),
|
|
numFilters_, outputD_[i], outputH_[i], outputW_[i],
|
|
filterSizeZ_[i], filterSizeY_[i], filterSize_[i],
|
|
strideZ_[i], strideY_[i], stride_[i],
|
|
paddingZ_[i], paddingY_[i], padding_[i], 1.0, 1.0);
|
|
}
|
|
}
|
|
if (nullptr != this->biasParameter_) {
|
|
REGISTER_TIMER_INFO("FwBiasTimer", getName().c_str());
|
|
this->addBias();
|
|
}
|
|
forwardActivation();
|
|
}
|
|
|
|
void DeConv3DLayer::backward(const UpdateCallback &callback) {
|
|
backwardActivation();
|
|
int batchSize = getOutputGrad()->getHeight();
|
|
int outputWidth = getOutputGrad()->getWidth();
|
|
if (biases_ && biases_->getWGrad()) {
|
|
bpropBiases();
|
|
biases_->getParameterPtr()->incUpdate(callback);
|
|
}
|
|
for (size_t i =0; i < inputLayers_.size(); ++i) {
|
|
int M = M_[i];
|
|
int N = N_[i];
|
|
int K = K_[i];
|
|
Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_);
|
|
const MatrixPtr& inMat = getInputValue(i);
|
|
for (int n = 0; n < batchSize; ++n) {
|
|
REGISTER_TIMER_INFO("BwdDeConv3D", getName().c_str());
|
|
if (weights_[i]->getWGrad() || this->needGradient_) {
|
|
colBuf_->vol2Col(getOutputGrad()->getData() + n * outputWidth,
|
|
numFilters_, outputD_[i], outputH_[i], outputW_[i],
|
|
filterSizeZ_[i], filterSizeY_[i], filterSize_[i],
|
|
strideZ_[i], strideY_[i], stride_[i],
|
|
paddingZ_[i], paddingY_[i], padding_[i]);
|
|
}
|
|
if (weights_[i]->getWGrad()) {
|
|
real *inData = inMat->getData() + n * inMat->getWidth();;
|
|
real *wGradData = weights_[i]->getWGrad()->getData();
|
|
for (int g = 0; g < groups_[i]; g++) {
|
|
MatrixPtr colBufDataSub = colBuf_->subMatrix(g * K, K);
|
|
MatrixPtr inMatSub = Matrix::create(
|
|
inData, M, N, false, useGpu_);
|
|
MatrixPtr wGradMatSub = Matrix::create(
|
|
wGradData, K, M, false, useGpu_);
|
|
wGradMatSub->mul(*colBufDataSub,
|
|
*(inMatSub->getTranspose()), 1.0, 1.0);
|
|
wGradData += K * M;
|
|
inData += M * N;
|
|
}
|
|
weights_[i]->getParameterPtr()->incUpdate(callback);
|
|
}
|
|
if (this->needGradient_) {
|
|
real* preGrad = getInputGrad(i)->getData();
|
|
for (int g = 0; g < groups_[i]; ++g) {
|
|
MatrixPtr w = weights_[i]->getW()->subMatrix(g * K, K);
|
|
MatrixPtr outGradMat = colBuf_->subMatrix(g * K, K);
|
|
MatrixPtr inGradMatSub = Matrix::create(
|
|
preGrad, M, N, false, useGpu_);
|
|
inGradMatSub->mul(*(w->getTranspose()), *outGradMat, 1.0, 0.0);
|
|
preGrad += M * N;
|
|
}
|
|
}
|
|
REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
|
|
}
|
|
}
|
|
}
|
|
|
|
void DeConv3DLayer::bpropWeights(int i) { }
|
|
void DeConv3DLayer::bpropData(int i) { }
|
|
|
|
void DeConv3DLayer::bpropBiases() {
|
|
MatrixPtr outGradMat = getOutputGrad();
|
|
|
|
if (this->sharedBiases_) {
|
|
biases_->getWGrad()->collectSharedBias(*outGradMat, 1.0f);
|
|
} else {
|
|
biases_->getWGrad()->collectBias(*outGradMat, 1.0f);
|
|
}
|
|
}
|
|
|
|
void DeConv3DLayer::addBias() {
|
|
MatrixPtr outMat = getOutputValue();
|
|
if (this->sharedBiases_) {
|
|
outMat->addSharedBias(*(biases_->getW()), 1.0f);
|
|
} else {
|
|
outMat->addBias(*(biases_->getW()), 1.0f);
|
|
}
|
|
}
|
|
|
|
} // namespace paddle
|