You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/v2/fluid/tests/test_parallel_op.py

113 lines
3.7 KiB

import unittest
import paddle.v2.fluid as fluid
import numpy
class BaseParallelForTest(unittest.TestCase):
def main(self, callback, feed, fetch):
cpu = fluid.CPUPlace()
result_cpu = self._main_impl_(
callback=callback,
feed=feed,
fetch=fetch,
place=cpu,
use_parallel=False)
result_cpu_parallel = self._main_impl_(
callback=callback,
feed=feed,
fetch=fetch,
place=cpu,
use_parallel=True)
if fluid.core.is_compile_gpu():
gpu = fluid.CUDAPlace(0)
result_gpu = self._main_impl_(
callback=callback,
feed=feed,
fetch=fetch,
place=gpu,
use_parallel=False)
result_gpu_parallel = self._main_impl_(
callback=callback,
feed=feed,
fetch=fetch,
place=gpu,
use_parallel=True)
self._assert_same_(fetch, result_cpu, result_cpu_parallel,
result_gpu, result_gpu_parallel)
else:
self._assert_same_(fetch, result_cpu, result_cpu_parallel)
def _main_impl_(self, callback, feed, fetch, place, use_parallel=False):
if isinstance(fetch, basestring):
fetch = [fetch]
main = fluid.Program()
startup = fluid.Program()
# Fix seed
main.random_seed = 10
startup.random_seed = 10
with fluid.program_guard(main, startup):
generator = callback()
# Automatically insert parallel do if use_parallel = True
if use_parallel:
places = fluid.layers.get_places()
pd = fluid.layers.ParallelDo(places)
data = next(generator)
if isinstance(data, fluid.Variable):
data = [data]
with pd.do():
ins = map(pd.read_input, data)
if len(ins) == 1:
ins = ins[0]
loss = generator.send(ins) # patch input
pd.write_output(loss)
loss = pd()
else:
data = next(generator)
loss = generator.send(data)
self.assertIsNotNone(loss)
avg_loss = fluid.layers.mean(x=loss)
fluid.backward.append_backward(loss=avg_loss)
exe = fluid.Executor(place)
exe.run(startup)
return exe.run(main, feed=feed, fetch_list=fetch)
def _assert_same_(self, fetch, *args):
def _impl_(a, b, fetch_id, item_id):
item_str = ['CPU', 'ParallelCPU', 'GPU', 'ParallelGPU']
flag = numpy.allclose(a, b, rtol=0.1)
self.assertTrue(flag, "The {0} are different in {1}".format(
fetch[fetch_id], item_str[item_id]))
for i, items in enumerate(zip(*args)):
self.assertGreater(len(items), 0)
for j in range(1, len(items)):
_impl_(items[0], items[j], fetch_id=i, item_id=j)
class ParallelOpTest(BaseParallelForTest):
def test_simple_fc(self):
def __network__():
x = fluid.layers.data(shape=[784], dtype='float32', name='img')
# FIXME: This is a bug of parallel.do
x.stop_gradient = False
x = yield x
hidden = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
loss = fluid.layers.mean(x=hidden)
yield loss
self.main(
callback=__network__,
feed={
'img': numpy.random.random(size=(128, 784)).astype('float32')
},
fetch='fc1.w@GRAD')
if __name__ == '__main__':
unittest.main()