You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/memory/detail/buddy_allocator.cc

337 lines
10 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/memory/detail/buddy_allocator.h"
#include "glog/logging.h"
DEFINE_bool(free_idle_memory, false,
"If it is true, Paddle will try to free idle memory trunks during "
"running time.");
namespace paddle {
namespace memory {
namespace detail {
BuddyAllocator::BuddyAllocator(
std::unique_ptr<SystemAllocator> system_allocator, size_t min_chunk_size,
size_t max_chunk_size)
: min_chunk_size_(min_chunk_size),
max_chunk_size_(max_chunk_size),
cache_(system_allocator->UseGpu()),
system_allocator_(std::move(system_allocator)) {}
BuddyAllocator::~BuddyAllocator() {
VLOG(10) << "BuddyAllocator Disconstructor makes sure that all of these "
"have actually been freed";
while (!pool_.empty()) {
auto block = static_cast<MemoryBlock*>(std::get<2>(*pool_.begin()));
VLOG(10) << "Free from block (" << block << ", " << max_chunk_size_ << ")";
system_allocator_->Free(block, max_chunk_size_, block->index(cache_));
cache_.invalidate(block);
pool_.erase(pool_.begin());
}
}
inline size_t align(size_t size, size_t alignment) {
size_t remaining = size % alignment;
return remaining == 0 ? size : size + (alignment - remaining);
}
void* BuddyAllocator::Alloc(size_t unaligned_size) {
// adjust allocation alignment
size_t size =
align(unaligned_size + sizeof(MemoryBlock::Desc), min_chunk_size_);
// acquire the allocator lock
std::lock_guard<std::mutex> lock(mutex_);
VLOG(10) << "Allocate " << unaligned_size << " bytes from chunk size "
<< size;
// if the allocation is huge, send directly to the system allocator
if (size > max_chunk_size_) {
VLOG(10) << "Allocate from system allocator.";
return SystemAlloc(size);
}
// query and allocate from the existing chunk
auto it = FindExistChunk(size);
// refill the pool if failure
if (it == pool_.end()) {
it = RefillPool();
// if still failure, fail fatally
if (it == pool_.end()) {
return nullptr;
}
} else {
VLOG(10) << "Allocation from existing memory block " << std::get<2>(*it)
<< " at address "
<< reinterpret_cast<MemoryBlock*>(std::get<2>(*it))->data();
}
total_used_ += size;
total_free_ -= size;
// split the allocation and return data for use
return reinterpret_cast<MemoryBlock*>(SplitToAlloc(it, size))->data();
}
void BuddyAllocator::Free(void* p) {
// Point back to metadata
auto block = static_cast<MemoryBlock*>(p)->metadata();
// Acquire the allocator lock
std::lock_guard<std::mutex> lock(mutex_);
VLOG(10) << "Free from address " << block;
if (block->type(cache_) == MemoryBlock::HUGE_CHUNK) {
VLOG(10) << "Free directly from system allocator";
system_allocator_->Free(block, block->total_size(cache_),
block->index(cache_));
// Invalidate GPU allocation from cache
cache_.invalidate(block);
return;
}
block->mark_as_free(&cache_);
total_used_ -= block->total_size(cache_);
total_free_ += block->total_size(cache_);
// Trying to merge the right buddy
if (block->has_right_buddy(cache_)) {
VLOG(10) << "Merging this block " << block << " with its right buddy "
<< block->right_buddy(cache_);
auto right_buddy = block->right_buddy(cache_);
if (right_buddy->type(cache_) == MemoryBlock::FREE_CHUNK) {
// Take away right buddy from pool
pool_.erase(IndexSizeAddress(right_buddy->index(cache_),
right_buddy->total_size(cache_),
right_buddy));
// merge its right buddy to the block
block->merge(&cache_, right_buddy);
}
}
// Trying to merge the left buddy
if (block->has_left_buddy(cache_)) {
VLOG(10) << "Merging this block " << block << " with its left buddy "
<< block->left_buddy(cache_);
auto left_buddy = block->left_buddy(cache_);
if (left_buddy->type(cache_) == MemoryBlock::FREE_CHUNK) {
// Take away right buddy from pool
pool_.erase(IndexSizeAddress(left_buddy->index(cache_),
left_buddy->total_size(cache_), left_buddy));
// merge the block to its left buddy
left_buddy->merge(&cache_, block);
block = left_buddy;
}
}
// Dumping this block into pool
VLOG(10) << "Inserting free block (" << block << ", "
<< block->total_size(cache_) << ")";
pool_.insert(
IndexSizeAddress(block->index(cache_), block->total_size(cache_), block));
if (FLAGS_free_idle_memory) {
// Clean up if existing too much free memory
// Prefer freeing fallback allocation first
CleanIdleFallBackAlloc();
// Free normal allocation
CleanIdleNormalAlloc();
}
}
size_t BuddyAllocator::Used() { return total_used_; }
void* BuddyAllocator::SystemAlloc(size_t size) {
size_t index = 0;
void* p = system_allocator_->Alloc(&index, size);
VLOG(10) << "Allocated " << p << " from system allocator.";
if (p == nullptr) return nullptr;
static_cast<MemoryBlock*>(p)->init(&cache_, MemoryBlock::HUGE_CHUNK, index,
size, nullptr, nullptr);
return static_cast<MemoryBlock*>(p)->data();
}
BuddyAllocator::PoolSet::iterator BuddyAllocator::RefillPool() {
#ifdef PADDLE_WITH_CUDA
if (system_allocator_->UseGpu()) {
if ((total_used_ + total_free_) == 0) {
// Compute the maximum allocation size for the first allocation.
max_chunk_size_ = platform::GpuMaxChunkSize();
}
}
#endif
// Allocate a new maximum sized block
size_t index = 0;
void* p = system_allocator_->Alloc(&index, max_chunk_size_);
if (p == nullptr) return pool_.end();
VLOG(10) << "Creating and inserting new block " << p
<< " from system allocator";
static_cast<MemoryBlock*>(p)->init(&cache_, MemoryBlock::FREE_CHUNK, index,
max_chunk_size_, nullptr, nullptr);
// gpu fallback allocation
if (system_allocator_->UseGpu() &&
static_cast<MemoryBlock*>(p)->index(cache_) == 1) {
fallback_alloc_count_++;
}
total_free_ += max_chunk_size_;
// dump the block into pool
return pool_.insert(IndexSizeAddress(index, max_chunk_size_, p)).first;
}
BuddyAllocator::PoolSet::iterator BuddyAllocator::FindExistChunk(size_t size) {
size_t index = 0;
while (1) {
auto it = pool_.lower_bound(IndexSizeAddress(index, size, nullptr));
// no match chunk memory
if (it == pool_.end()) return it;
if (std::get<0>(*it) > index) {
// find suitable one
if (std::get<1>(*it) >= size) {
return it;
}
// update and continue
index = std::get<0>(*it);
continue;
}
return it;
}
}
void* BuddyAllocator::SplitToAlloc(BuddyAllocator::PoolSet::iterator it,
size_t size) {
auto block = static_cast<MemoryBlock*>(std::get<2>(*it));
pool_.erase(it);
VLOG(10) << "Split block (" << block << ", " << block->total_size(cache_)
<< ") into";
block->split(&cache_, size);
VLOG(10) << "Left block (" << block << ", " << block->total_size(cache_)
<< ")";
block->set_type(&cache_, MemoryBlock::ARENA_CHUNK);
// the rest of memory if exist
if (block->has_right_buddy(cache_)) {
if (block->right_buddy(cache_)->type(cache_) == MemoryBlock::FREE_CHUNK) {
VLOG(10) << "Insert right block (" << block->right_buddy(cache_) << ", "
<< block->right_buddy(cache_)->total_size(cache_) << ")";
pool_.insert(
IndexSizeAddress(block->right_buddy(cache_)->index(cache_),
block->right_buddy(cache_)->total_size(cache_),
block->right_buddy(cache_)));
}
}
return block;
}
void BuddyAllocator::CleanIdleFallBackAlloc() {
// If fallback allocation does not exist, return directly
if (!fallback_alloc_count_) return;
for (auto pool = pool_.rbegin(); pool != pool_.rend();) {
// If free memory block less than max_chunk_size_, return directly
if (std::get<1>(*pool) < max_chunk_size_) return;
MemoryBlock* block = static_cast<MemoryBlock*>(std::get<2>(*pool));
// If no GPU fallback allocator, return
if (!system_allocator_->UseGpu() || block->index(cache_) == 0) {
return;
}
VLOG(10) << "Return block " << block << " to fallback allocator.";
system_allocator_->Free(block, max_chunk_size_, block->index(cache_));
cache_.invalidate(block);
pool = PoolSet::reverse_iterator(pool_.erase(std::next(pool).base()));
total_free_ -= max_chunk_size_;
fallback_alloc_count_--;
// If no fall allocation exists, return directly
if (!fallback_alloc_count_) return;
}
}
void BuddyAllocator::CleanIdleNormalAlloc() {
auto shall_free_alloc = [&]() -> bool {
// free all fallback allocations
if (fallback_alloc_count_ > 0) {
return true;
}
// keep 2x overhead if we haven't fallen back
if ((total_used_ + max_chunk_size_) * 2 < total_free_) {
return true;
}
return false;
};
if (!shall_free_alloc()) return;
for (auto pool = pool_.rbegin(); pool != pool_.rend();) {
// If free memory block less than max_chunk_size_, return directly
if (std::get<1>(*pool) < max_chunk_size_) return;
MemoryBlock* block = static_cast<MemoryBlock*>(std::get<2>(*pool));
VLOG(10) << "Return block " << block << " to base allocator.";
system_allocator_->Free(block, max_chunk_size_, block->index(cache_));
cache_.invalidate(block);
pool = PoolSet::reverse_iterator(pool_.erase(std::next(pool).base()));
total_free_ -= max_chunk_size_;
if (!shall_free_alloc()) return;
}
}
} // namespace detail
} // namespace memory
} // namespace paddle