You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							267 lines
						
					
					
						
							12 KiB
						
					
					
				
			
		
		
	
	
							267 lines
						
					
					
						
							12 KiB
						
					
					
				| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #include "paddle/fluid/framework/eigen.h"
 | |
| #include "paddle/fluid/framework/op_registry.h"
 | |
| #include "paddle/fluid/memory/memory.h"
 | |
| #include "paddle/fluid/operators/conv_transpose_op.h"
 | |
| #include "paddle/fluid/platform/assert.h"
 | |
| #include "paddle/fluid/platform/cudnn_helper.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| using Tensor = framework::Tensor;
 | |
| using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
 | |
| using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
 | |
| using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
 | |
| using DataLayout = platform::DataLayout;
 | |
| 
 | |
| static constexpr size_t kConvCUDNNWorkspaceLimitBytes = 1024 * 1024 * 1024;
 | |
| 
 | |
| template <typename T>
 | |
| class CUDNNConvTransposeOpKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& ctx) const override {
 | |
|     PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
 | |
|                    "It must use CUDAPlace.");
 | |
|     auto* input = ctx.Input<Tensor>("Input");
 | |
|     auto* filter = ctx.Input<Tensor>("Filter");
 | |
|     auto* output = ctx.Output<Tensor>("Output");
 | |
| 
 | |
|     std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
 | |
|     std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
 | |
|     // cudnn v5 does not support dilations
 | |
|     std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
 | |
|     int groups = ctx.Attr<int>("groups");
 | |
|     int user_workspace_size = ctx.Attr<int>("workspace_size_MB");
 | |
| 
 | |
|     const T* input_data = input->data<T>();
 | |
|     const T* filter_data = filter->data<T>();
 | |
|     T* output_data = output->mutable_data<T>(ctx.GetPlace());
 | |
|     // ------------------- cudnn descriptors ---------------------
 | |
|     ScopedTensorDescriptor input_desc;
 | |
|     ScopedTensorDescriptor output_desc;
 | |
|     ScopedFilterDescriptor filter_desc;
 | |
|     ScopedConvolutionDescriptor conv_desc;
 | |
|     DataLayout layout;
 | |
| 
 | |
|     if (strides.size() == 2U) {
 | |
|       layout = DataLayout::kNCHW;
 | |
|     } else {
 | |
|       layout = DataLayout::kNCDHW;
 | |
|     }
 | |
| 
 | |
|     // (N, M, H, W) or (N, M, D, H, W)
 | |
|     cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
 | |
|         layout, framework::vectorize2int(input->dims()), groups);
 | |
|     // (N, C, O_h, O_w) or (N, C, O_d, O_h, O_w)
 | |
|     cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
 | |
|         layout, framework::vectorize2int(output->dims()), groups);
 | |
|     // (M, C, K_h, K_w) or (M, C, K_d, K_h, K_w)
 | |
|     cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
 | |
|         layout, framework::vectorize2int(filter->dims()), groups);
 | |
|     cudnnConvolutionDescriptor_t cudnn_conv_desc =
 | |
|         conv_desc.descriptor<T>(paddings, strides, dilations);
 | |
| 
 | |
|     // ------------------- cudnn conv workspace ---------------------
 | |
|     size_t workspace_size_in_bytes;  // final workspace to allocate.
 | |
|     size_t workspace_size_limit = kConvCUDNNWorkspaceLimitBytes;
 | |
|     if (user_workspace_size > 0) {
 | |
|       workspace_size_limit = user_workspace_size * 1024 * 1024;
 | |
|     }
 | |
|     // ------------------- cudnn conv algorithm ---------------------
 | |
|     cudnnConvolutionBwdDataAlgo_t algo;
 | |
|     auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
 | |
|     auto handle = dev_ctx.cudnn_handle();
 | |
|     // Get the algorithm
 | |
|     CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
 | |
|         handle, cudnn_filter_desc, cudnn_input_desc, cudnn_conv_desc,
 | |
|         // dxDesc: Handle to the previously initialized output tensor
 | |
|         // descriptor.
 | |
|         cudnn_output_desc, CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
 | |
|         workspace_size_limit, &algo));
 | |
| 
 | |
|     // get workspace size able to allocate
 | |
|     CUDNN_ENFORCE(
 | |
|         platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
 | |
|             handle, cudnn_filter_desc, cudnn_input_desc, cudnn_conv_desc,
 | |
|             cudnn_output_desc, algo, &workspace_size_in_bytes));
 | |
| 
 | |
|     // ------------------- cudnn conv transpose forward ---------------------
 | |
|     int input_offset = input->numel() / input->dims()[0] / groups;
 | |
|     int output_offset = output->numel() / output->dims()[0] / groups;
 | |
|     int filter_offset = filter->numel() / groups;
 | |
|     T alpha = 1.0f, beta = 0.0f;
 | |
|     auto workspace_handle = dev_ctx.cudnn_workspace_handle();
 | |
|     for (int g = 0; g < groups; g++) {
 | |
|       auto cudnn_func = [&](void* cudnn_workspace) {
 | |
|         CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardData(
 | |
|             handle, &alpha, cudnn_filter_desc, filter_data + filter_offset * g,
 | |
|             cudnn_input_desc, input_data + input_offset * g, cudnn_conv_desc,
 | |
|             algo, cudnn_workspace, workspace_size_in_bytes, &beta,
 | |
|             cudnn_output_desc, output_data + output_offset * g));
 | |
|       };
 | |
|       workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes);
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& ctx) const override {
 | |
|     PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
 | |
|                    "It must use CUDAPlace.");
 | |
|     auto input = ctx.Input<Tensor>("Input");
 | |
|     auto filter = ctx.Input<Tensor>("Filter");
 | |
|     auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
 | |
|     auto input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
 | |
|     auto filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));
 | |
|     const T* input_data = input->data<T>();
 | |
|     const T* output_grad_data = output_grad->data<T>();
 | |
|     const T* filter_data = filter->data<T>();
 | |
| 
 | |
|     std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
 | |
|     std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
 | |
|     // cudnn v5 does not support dilations
 | |
|     std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
 | |
|     int groups = ctx.Attr<int>("groups");
 | |
|     int user_workspace_size = ctx.Attr<int>("workspace_size_MB");
 | |
| 
 | |
|     // ------------------- cudnn descriptors ---------------------
 | |
|     ScopedTensorDescriptor input_desc;
 | |
|     ScopedTensorDescriptor output_desc;
 | |
|     ScopedFilterDescriptor filter_desc;
 | |
|     ScopedConvolutionDescriptor conv_desc;
 | |
|     DataLayout layout = DataLayout::kNCHW;
 | |
| 
 | |
|     // Input: (N, M, H, W) or (N, M, D, H, W)
 | |
|     cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
 | |
|         layout, framework::vectorize2int(input->dims()), groups);
 | |
|     // Output: (N, C, O_h, O_w) or (N, C, O_d, O_h, O_w)
 | |
|     cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
 | |
|         layout, framework::vectorize2int(output_grad->dims()), groups);
 | |
|     // Filter (M, C, K_h, K_w) or (M, C, K_d K_h, K_w)
 | |
|     cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
 | |
|         layout, framework::vectorize2int(filter->dims()), groups);
 | |
| 
 | |
|     cudnnConvolutionDescriptor_t cudnn_conv_desc =
 | |
|         conv_desc.descriptor<T>(paddings, strides, dilations);
 | |
| 
 | |
|     // ------------------- cudnn backward algorithm ---------------------
 | |
|     cudnnConvolutionFwdAlgo_t data_algo;
 | |
|     cudnnConvolutionBwdFilterAlgo_t filter_algo;
 | |
|     size_t bwd_filter_ws_size, fwd_ws_size;
 | |
|     size_t workspace_size_in_bytes = 0;
 | |
|     size_t workspace_size_limit = kConvCUDNNWorkspaceLimitBytes;
 | |
|     if (user_workspace_size > 0) {
 | |
|       workspace_size_limit = user_workspace_size * 1024 * 1024;
 | |
|     }
 | |
| 
 | |
|     auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
 | |
|     auto handle = dev_ctx.cudnn_handle();
 | |
|     if (input_grad) {
 | |
|       // choose backward algorithm for data
 | |
|       CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm(
 | |
|           handle, cudnn_output_desc, cudnn_filter_desc, cudnn_conv_desc,
 | |
|           cudnn_input_desc, CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
 | |
|           workspace_size_limit, &data_algo));
 | |
|       CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
 | |
|           handle, cudnn_output_desc, cudnn_filter_desc, cudnn_conv_desc,
 | |
|           cudnn_input_desc, data_algo, &fwd_ws_size));
 | |
|       workspace_size_in_bytes = std::max(workspace_size_in_bytes, fwd_ws_size);
 | |
|     }
 | |
| 
 | |
|     if (filter_grad) {
 | |
|       // choose backward algorithm for filter
 | |
|       CUDNN_ENFORCE(
 | |
|           platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
 | |
|               handle, cudnn_output_desc, cudnn_input_desc, cudnn_conv_desc,
 | |
|               cudnn_filter_desc,
 | |
|               CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
 | |
|               workspace_size_limit, &filter_algo));
 | |
| 
 | |
|       // get workspace for backwards filter algorithm
 | |
|       CUDNN_ENFORCE(
 | |
|           platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
 | |
|               handle, cudnn_output_desc, cudnn_input_desc, cudnn_conv_desc,
 | |
|               cudnn_filter_desc, filter_algo, &bwd_filter_ws_size));
 | |
|       workspace_size_in_bytes =
 | |
|           std::max(workspace_size_in_bytes, bwd_filter_ws_size);
 | |
|     }
 | |
| 
 | |
|     // ------------------- cudnn conv backward data ---------------------
 | |
|     // FIXME(typhoonzero): template type T may not be the same as cudnn call.
 | |
|     int input_offset = input->numel() / input->dims()[0] / groups;
 | |
|     int output_grad_offset =
 | |
|         output_grad->numel() / output_grad->dims()[0] / groups;
 | |
|     int filter_offset = filter->numel() / groups;
 | |
|     T alpha = 1.0f, beta = 0.0f;
 | |
|     auto workspace_handle = dev_ctx.cudnn_workspace_handle();
 | |
|     if (input_grad) {
 | |
|       T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
 | |
|       // Because beta is zero, it is unnecessary to reset input_grad.
 | |
|       for (int g = 0; g < groups; g++) {
 | |
|         auto cudnn_func = [&](void* cudnn_workspace) {
 | |
|           CUDNN_ENFORCE(platform::dynload::cudnnConvolutionForward(
 | |
|               handle, &alpha, cudnn_output_desc,
 | |
|               output_grad_data + output_grad_offset * g, cudnn_filter_desc,
 | |
|               filter_data + filter_offset * g, cudnn_conv_desc, data_algo,
 | |
|               cudnn_workspace, workspace_size_in_bytes, &beta, cudnn_input_desc,
 | |
|               input_grad_data + input_offset * g));
 | |
|         };
 | |
|         workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // ------------------- cudnn conv backward filter ---------------------
 | |
|     if (filter_grad) {
 | |
|       T* filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
 | |
|       // Because beta is zero, it is unnecessary to reset filter_grad.
 | |
|       // Gradient with respect to the filter
 | |
|       for (int g = 0; g < groups; g++) {
 | |
|         auto cudnn_func = [&](void* cudnn_workspace) {
 | |
|           CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter(
 | |
|               handle, &alpha, cudnn_output_desc,
 | |
|               output_grad_data + output_grad_offset * g, cudnn_input_desc,
 | |
|               input_data + input_offset * g, cudnn_conv_desc, filter_algo,
 | |
|               cudnn_workspace, workspace_size_in_bytes, &beta,
 | |
|               cudnn_filter_desc, filter_grad_data + filter_offset * g));
 | |
|         };
 | |
|         workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 | |
| 
 | |
| namespace ops = paddle::operators;
 | |
| 
 | |
| REGISTER_OP_KERNEL(conv2d_transpose, CUDNN, ::paddle::platform::CUDAPlace,
 | |
|                    ops::CUDNNConvTransposeOpKernel<float>,
 | |
|                    ops::CUDNNConvTransposeOpKernel<double>);
 | |
| REGISTER_OP_KERNEL(conv2d_transpose_grad, CUDNN, ::paddle::platform::CUDAPlace,
 | |
|                    ops::CUDNNConvTransposeGradOpKernel<float>,
 | |
|                    ops::CUDNNConvTransposeGradOpKernel<double>);
 | |
| 
 | |
| REGISTER_OP_KERNEL(conv3d_transpose, CUDNN, ::paddle::platform::CUDAPlace,
 | |
|                    ops::CUDNNConvTransposeOpKernel<float>,
 | |
|                    ops::CUDNNConvTransposeOpKernel<double>);
 | |
| REGISTER_OP_KERNEL(conv3d_transpose_grad, CUDNN, ::paddle::platform::CUDAPlace,
 | |
|                    ops::CUDNNConvTransposeGradOpKernel<float>,
 | |
|                    ops::CUDNNConvTransposeGradOpKernel<double>);
 |