You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							193 lines
						
					
					
						
							7.0 KiB
						
					
					
				
			
		
		
	
	
							193 lines
						
					
					
						
							7.0 KiB
						
					
					
				| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #pragma once
 | |
| #include <algorithm>
 | |
| #include "paddle/fluid/framework/eigen.h"
 | |
| #include "paddle/fluid/framework/op_registry.h"
 | |
| #include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
 | |
| #include "paddle/fluid/operators/math/blas.h"
 | |
| #include "paddle/fluid/operators/math/math_function.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| using Tensor = framework::Tensor;
 | |
| using LoDTensor = framework::LoDTensor;
 | |
| using DataLayout = framework::DataLayout;
 | |
| 
 | |
| template <typename DeviceContext, typename T>
 | |
| class GroupNormKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& ctx) const override {
 | |
|     const float epsilon = ctx.Attr<float>("epsilon");
 | |
|     auto* scale = ctx.Input<Tensor>("Scale");
 | |
|     auto* bias = ctx.Input<Tensor>("Bias");
 | |
|     auto* x = ctx.Input<Tensor>("X");
 | |
| 
 | |
|     auto* y = ctx.Output<Tensor>("Y");
 | |
|     auto* mean = ctx.Output<Tensor>("Mean");
 | |
|     auto* var = ctx.Output<Tensor>("Variance");
 | |
|     const auto groups = ctx.Attr<int>("groups");
 | |
| 
 | |
|     const auto x_dims = x->dims();
 | |
|     const int group_size = (x_dims[1] - 1) / groups + 1;
 | |
| 
 | |
|     y->mutable_data<T>(ctx.GetPlace());
 | |
|     mean->mutable_data<T>(ctx.GetPlace());
 | |
|     var->mutable_data<T>(ctx.GetPlace());
 | |
| 
 | |
|     auto* x_data = x->data<T>();
 | |
|     auto* y_data = y->data<T>();
 | |
|     auto* mean_data = mean->data<T>();
 | |
|     auto* var_data = var->data<T>();
 | |
| 
 | |
|     const T* scale_data = nullptr;
 | |
|     if (scale) scale_data = scale->data<T>();
 | |
|     const T* bias_data = nullptr;
 | |
|     if (bias) bias_data = bias->data<T>();
 | |
| 
 | |
|     int imsize = x_dims[2] * x_dims[3];
 | |
|     auto* iter_x_data = x_data;
 | |
|     auto* iter_y_data = y_data;
 | |
|     for (int bid = 0; bid < x_dims[0]; bid++)
 | |
|       for (int gid = 0; gid < groups; gid++) {
 | |
|         T x_mean = 0, x_var = 0;
 | |
|         int number = std::min(group_size,
 | |
|                               static_cast<int>(x_dims[1] - gid * group_size));
 | |
|         auto* tmp = iter_x_data;
 | |
|         for (int cid = 0; cid < number; cid++) {
 | |
|           for (int imid = 0; imid < imsize; imid++, iter_x_data++) {
 | |
|             x_mean += iter_x_data[0];
 | |
|             x_var += iter_x_data[0] * iter_x_data[0];
 | |
|           }
 | |
|         }
 | |
|         x_mean /= number * imsize;
 | |
|         x_var /= number * imsize;
 | |
|         x_var = x_var - x_mean * x_mean;
 | |
|         T var_inv = 1.0 / sqrt(x_var + epsilon);
 | |
|         mean_data[bid * groups + gid] = x_mean;
 | |
|         var_data[bid * groups + gid] = x_var;
 | |
|         for (int cid = 0; cid < number; cid++) {
 | |
|           for (int imid = 0; imid < imsize; imid++, tmp++, iter_y_data++) {
 | |
|             T val = (tmp[0] - x_mean) * var_inv;
 | |
|             if (scale_data) val *= scale_data[gid * group_size + cid];
 | |
|             if (bias_data) val += bias_data[gid * group_size + cid];
 | |
|             iter_y_data[0] = val;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename DeviceContext, typename T>
 | |
| class GroupNormGradKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& ctx) const override {
 | |
|     const float epsilon = ctx.Attr<float>("epsilon");
 | |
|     auto* x = ctx.Input<Tensor>("Y");
 | |
|     auto* var = ctx.Input<Tensor>("Variance");
 | |
|     auto* scale = ctx.Input<Tensor>("Scale");
 | |
|     auto* bias = ctx.Input<Tensor>("Bias");
 | |
|     auto* d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
 | |
|     const auto groups = ctx.Attr<int>("groups");
 | |
| 
 | |
|     // init output
 | |
|     auto* d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
 | |
|     auto* d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
 | |
|     auto* d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));
 | |
| 
 | |
|     const auto& x_dims = x->dims();
 | |
|     const int group_size = (x_dims[1] - 1) / groups + 1;
 | |
| 
 | |
|     d_x->mutable_data<T>(ctx.GetPlace());
 | |
|     math::SetConstant<DeviceContext, T> set_zero;
 | |
|     auto& dev_ctx = ctx.template device_context<DeviceContext>();
 | |
| 
 | |
|     auto* x_data = x->data<T>();
 | |
|     auto* d_x_data = d_x->data<T>();
 | |
|     auto* y_data = d_y->data<T>();
 | |
|     auto* var_data = var->data<T>();
 | |
|     T* d_scale_data = nullptr;
 | |
|     if (d_scale) {
 | |
|       d_scale->mutable_data<T>(ctx.GetPlace());
 | |
|       set_zero(dev_ctx, d_scale, static_cast<T>(0));
 | |
|       d_scale_data = d_scale->data<T>();
 | |
|     }
 | |
|     T* d_bias_data = nullptr;
 | |
|     if (d_bias) {
 | |
|       d_bias->mutable_data<T>(ctx.GetPlace());
 | |
|       set_zero(dev_ctx, d_bias, static_cast<T>(0));
 | |
|       d_bias_data = d_bias->data<T>();
 | |
|     }
 | |
| 
 | |
|     const T* scale_data = nullptr;
 | |
|     if (scale) scale_data = scale->data<T>();
 | |
|     const T* bias_data = nullptr;
 | |
|     if (bias) bias_data = bias->data<T>();
 | |
| 
 | |
|     int imsize = x_dims[2] * x_dims[3];
 | |
|     auto* iter_x_data = x_data;
 | |
|     auto* iter_d_x_data = d_x_data;
 | |
|     auto* iter_y_data = y_data;
 | |
|     for (int bid = 0; bid < x_dims[0]; bid++)
 | |
|       for (int gid = 0; gid < groups; gid++) {
 | |
|         T x_var = var_data[bid * groups + gid];
 | |
|         T var_inv = 1.0 / sqrt(x_var + epsilon);
 | |
|         int number = std::min(group_size,
 | |
|                               static_cast<int>(x_dims[1] - gid * group_size));
 | |
|         T number_inv = 1.0 / (number * imsize);
 | |
|         auto* iter_x_data2 = iter_x_data;
 | |
|         auto* iter_y_data2 = iter_y_data;
 | |
|         T dp_scale = 0, dp_bias = 0;
 | |
|         for (int cid = 0; cid < number; cid++) {
 | |
|           for (int imid = 0; imid < imsize;
 | |
|                imid++, iter_x_data++, iter_y_data++) {
 | |
|             T val = iter_x_data[0];
 | |
|             if (bias_data) val -= bias_data[gid * group_size + cid];
 | |
|             T dval = iter_y_data[0];
 | |
|             dp_scale += val * dval;
 | |
|             dp_bias += dval * scale_data[gid * group_size + cid];
 | |
| 
 | |
|             if (scale_data && scale_data[gid * group_size + cid] != 0)
 | |
|               val /= scale_data[gid * group_size + cid];
 | |
|             if (d_bias_data) d_bias_data[gid * group_size + cid] += dval;
 | |
|             if (d_scale_data)
 | |
|               d_scale_data[gid * group_size + cid] += val * dval;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         for (int cid = 0; cid < number; cid++) {
 | |
|           for (int imid = 0; imid < imsize;
 | |
|                imid++, iter_d_x_data++, iter_x_data2++, iter_y_data2++) {
 | |
|             T v_y = iter_x_data2[0];
 | |
|             T dly = iter_y_data2[0];
 | |
|             T dss = dp_scale;
 | |
|             T dbs = dp_bias;
 | |
|             T v_scale = scale_data[gid * group_size + cid];
 | |
|             T v_bias = bias_data[gid * group_size + cid];
 | |
|             v_y -= v_bias;
 | |
|             if (v_scale != 0) v_y /= v_scale;
 | |
|             iter_d_x_data[0] =
 | |
|                 (dly * v_scale - number_inv * dss * v_y - number_inv * dbs) *
 | |
|                 var_inv;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 |