You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							94 lines
						
					
					
						
							3.0 KiB
						
					
					
				
			
		
		
	
	
							94 lines
						
					
					
						
							3.0 KiB
						
					
					
				/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
 | 
						|
Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
you may not use this file except in compliance with the License.
 | 
						|
You may obtain a copy of the License at
 | 
						|
 | 
						|
    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 | 
						|
Unless required by applicable law or agreed to in writing, software
 | 
						|
distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
See the License for the specific language governing permissions and
 | 
						|
limitations under the License. */
 | 
						|
 | 
						|
#pragma once
 | 
						|
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
#include "paddle/fluid/framework/eigen.h"
 | 
						|
#include "paddle/fluid/framework/op_registry.h"
 | 
						|
#include "paddle/fluid/framework/tensor.h"
 | 
						|
#include "paddle/fluid/framework/tensor_util.h"
 | 
						|
#include "paddle/fluid/operators/math/padding.h"
 | 
						|
 | 
						|
namespace paddle {
 | 
						|
namespace operators {
 | 
						|
 | 
						|
template <typename DeviceContext, typename T>
 | 
						|
class PadConstantLikeKernel : public framework::OpKernel<T> {
 | 
						|
 public:
 | 
						|
  void Compute(const framework::ExecutionContext& context) const override {
 | 
						|
    auto in_x = context.Input<framework::Tensor>("X");
 | 
						|
    auto in_y = context.Input<framework::Tensor>("Y");
 | 
						|
    auto* out = context.Output<framework::Tensor>("Out");
 | 
						|
 | 
						|
    if (in_x->dims() == in_y->dims()) {
 | 
						|
      // TensorCopy(in_y, context.GetPlace(), context, out);
 | 
						|
      out->ShareDataWith(*in_y);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    T pad_value = context.Attr<T>("pad_value");
 | 
						|
    out->mutable_data<T>(context.GetPlace());
 | 
						|
 | 
						|
    int rank = context.Input<framework::Tensor>("X")->dims().size();
 | 
						|
 | 
						|
    std::vector<int> pads(rank * 2, 0);
 | 
						|
 | 
						|
    for (int j = 0; j < rank; ++j) {
 | 
						|
      pads[j * 2] = 0;
 | 
						|
      pads[j * 2 + 1] = static_cast<int>(in_x->dims()[j] - in_y->dims()[j]);
 | 
						|
    }
 | 
						|
 | 
						|
    math::PaddingFunctor<DeviceContext, T>(rank, context, pads, pad_value,
 | 
						|
                                           *in_y, out);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <typename DeviceContext, typename T>
 | 
						|
class PadConstantLikeGradKernel : public framework::OpKernel<T> {
 | 
						|
 public:
 | 
						|
  void Compute(const framework::ExecutionContext& context) const override {
 | 
						|
    auto in_y = context.Input<framework::Tensor>("Y");
 | 
						|
    auto in_dout =
 | 
						|
        context.Input<framework::Tensor>(framework::GradVarName("Out"));
 | 
						|
    auto* d_y = context.Output<framework::Tensor>(framework::GradVarName("Y"));
 | 
						|
 | 
						|
    if (d_y == nullptr) {
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (in_dout->dims() == in_y->dims()) {
 | 
						|
      // TensorCopy(in_dout, context.GetPlace(), context, d_y);
 | 
						|
      d_y->ShareDataWith(*in_dout);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    d_y->mutable_data<T>(context.GetPlace());
 | 
						|
    int rank = in_dout->dims().size();
 | 
						|
 | 
						|
    std::vector<int> pads(static_cast<size_t>(rank) * 2, 0);
 | 
						|
    for (int j = 0; j < rank; ++j) {
 | 
						|
      pads[j * 2] = 0;
 | 
						|
      pads[j * 2 + 1] = static_cast<int>(in_dout->dims()[j] - in_y->dims()[j]);
 | 
						|
    }
 | 
						|
 | 
						|
    math::PaddingGradFunctor<DeviceContext, T>(rank, context, pads, *in_dout,
 | 
						|
                                               d_y);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace operators
 | 
						|
}  // namespace paddle
 |