You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
303 lines
12 KiB
303 lines
12 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
#include <memory>
|
|
#ifdef PADDLE_WITH_PSLIB
|
|
#include <archive.h>
|
|
#include <pslib.h>
|
|
#endif
|
|
#include <ThreadPool.h>
|
|
#include <atomic>
|
|
#include <ctime>
|
|
#include <map>
|
|
#include <random>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
|
|
#include "paddle/fluid/framework/program_desc.h"
|
|
#include "paddle/fluid/framework/scope.h"
|
|
#include "paddle/fluid/framework/tensor.h"
|
|
#include "paddle/fluid/framework/variable_helper.h"
|
|
#include "paddle/fluid/platform/macros.h" // for DISABLE_COPY_AND_ASSIGN
|
|
|
|
namespace paddle {
|
|
namespace framework {
|
|
|
|
// A wrapper class for pslib.h, this class follows Singleton pattern
|
|
// i.e. only initialized once in the current process
|
|
// Example:
|
|
// std::shared_ptr<FleetWrapper> fleet_ptr =
|
|
// FleetWrapper::GetInstance();
|
|
// string dist_desc;
|
|
// fleet_ptr->InitServer(dist_desc, 0);
|
|
// interface design principles:
|
|
// Pull
|
|
// Sync: PullSparseVarsSync
|
|
// Async: PullSparseVarsAsync(not implemented currently)
|
|
// Push
|
|
// Sync: PushSparseVarsSync
|
|
// Async: PushSparseVarsAsync(not implemented currently)
|
|
// Async: PushSparseVarsWithLabelAsync(with special usage)
|
|
// Push dense variables to server in Async mode
|
|
// Param<in>: scope, table_id, var_names
|
|
// Param<out>: push_sparse_status
|
|
|
|
class FleetWrapper {
|
|
public:
|
|
virtual ~FleetWrapper() {}
|
|
FleetWrapper() {
|
|
scale_sparse_gradient_with_batch_size_ = true;
|
|
// trainer sleep some time for pslib core dump
|
|
sleep_seconds_before_fail_exit_ = 300;
|
|
// pslib request server timeout ms
|
|
client2client_request_timeout_ms_ = 500000;
|
|
// pslib connect server timeout_ms
|
|
client2client_connect_timeout_ms_ = 10000;
|
|
// pslib request max retry
|
|
client2client_max_retry_ = 3;
|
|
pull_local_thread_num_ = 25;
|
|
}
|
|
|
|
// set client to client communication config
|
|
void SetClient2ClientConfig(int request_timeout_ms, int connect_timeout_ms,
|
|
int max_retry);
|
|
|
|
void SetPullLocalThreadNum(int thread_num) {
|
|
pull_local_thread_num_ = thread_num;
|
|
}
|
|
|
|
// Pull sparse variables from server in sync mode
|
|
// Param<in>: scope, table_id, var_names, fea_keys, fea_dim, var_emb_names
|
|
// Param<out>: fea_values
|
|
void PullSparseVarsSync(const Scope& scope, const uint64_t table_id,
|
|
const std::vector<std::string>& var_names,
|
|
std::vector<uint64_t>* fea_keys,
|
|
std::vector<std::vector<float>>* fea_values,
|
|
int fea_dim,
|
|
const std::vector<std::string>& var_emb_names);
|
|
|
|
// Pull sparse variables from server in async mode
|
|
// Param<in>: scope, table_id, var_names, fea_keys, fea_dim
|
|
// Param<out>: fea_values std::future
|
|
std::future<int32_t> PullSparseVarsAsync(
|
|
const Scope& scope, const uint64_t table_id,
|
|
const std::vector<std::string>& var_names,
|
|
std::vector<uint64_t>* fea_keys,
|
|
std::vector<std::vector<float>>* fea_values, int fea_dim);
|
|
|
|
// Pull sparse variables from server in sync mode
|
|
// pull immediately to tensors
|
|
void PullSparseToTensorSync(const uint64_t table_id, int fea_dim,
|
|
uint64_t padding_id, platform::Place place,
|
|
std::vector<const LoDTensor*>* inputs, // NOLINT
|
|
std::vector<LoDTensor*>* outputs); // NOLINT
|
|
|
|
// pull dense variables from server in sync mod
|
|
// Param<in>: scope, table_id, var_names
|
|
// Param<out>: void
|
|
void PullDenseVarsSync(const Scope& scope, const uint64_t table_id,
|
|
const std::vector<std::string>& var_names);
|
|
|
|
// pull dense variables from server in async mod
|
|
// Param<in>: scope, table_id, var_names
|
|
// Param<out>: pull_dense_status
|
|
void PullDenseVarsAsync(
|
|
const Scope& scope, const uint64_t table_id,
|
|
const std::vector<std::string>& var_names,
|
|
std::vector<::std::future<int32_t>>* pull_dense_status);
|
|
|
|
// push dense parameters(not gradients) to server in sync mode
|
|
void PushDenseParamSync(const Scope& scope, const uint64_t table_id,
|
|
const std::vector<std::string>& var_names);
|
|
|
|
// Push dense variables to server in async mode
|
|
// Param<in>: scope, table_id, var_names, scale_datanorm, batch_size
|
|
// Param<out>: push_sparse_status
|
|
void PushDenseVarsAsync(
|
|
const Scope& scope, const uint64_t table_id,
|
|
const std::vector<std::string>& var_names,
|
|
std::vector<::std::future<int32_t>>* push_sparse_status,
|
|
float scale_datanorm, int batch_size);
|
|
|
|
// push dense variables to server in sync mode
|
|
void PushDenseVarsSync(Scope* scope, const uint64_t table_id,
|
|
const std::vector<std::string>& var_names);
|
|
|
|
// Push sparse variables with labels to server in async mode
|
|
std::vector<std::unordered_map<uint64_t, std::vector<float>>> local_tables_;
|
|
void PullSparseToLocal(const uint64_t table_id, int fea_value_dim);
|
|
void PullSparseVarsFromLocal(const Scope& scope, const uint64_t table_id,
|
|
const std::vector<std::string>& var_names,
|
|
std::vector<uint64_t>* fea_keys,
|
|
std::vector<std::vector<float>>* fea_values,
|
|
int fea_value_dim);
|
|
void ClearLocalTable();
|
|
std::vector<std::unordered_map<uint64_t, std::vector<float>>>&
|
|
GetLocalTable() {
|
|
return local_tables_;
|
|
}
|
|
|
|
// This is specially designed for click/show stats in server
|
|
// Param<in>: scope, table_id, fea_keys, fea_labels, sparse_key_names,
|
|
// sparse_grad_names, batch_size, use_cvm, dump_slot
|
|
// Param<out>: push_values, push_sparse_status
|
|
void PushSparseVarsWithLabelAsync(
|
|
const Scope& scope, const uint64_t table_id,
|
|
const std::vector<uint64_t>& fea_keys,
|
|
const std::vector<float>& fea_labels,
|
|
const std::vector<std::string>& sparse_key_names,
|
|
const std::vector<std::string>& sparse_grad_names, const int emb_dim,
|
|
std::vector<std::vector<float>>* push_values,
|
|
std::vector<::std::future<int32_t>>* push_sparse_status,
|
|
const int batch_size, const bool use_cvm, const bool dump_slot,
|
|
std::vector<uint64_t>* sparse_push_keys, const bool no_cvm);
|
|
|
|
// Push sparse variables to server in async mode
|
|
void PushSparseFromTensorWithLabelAsync(
|
|
const Scope& scope, const uint64_t table_id, int fea_dim,
|
|
uint64_t padding_id, bool scale_sparse, const std::string& accesor,
|
|
const std::string& click_name, platform::Place place,
|
|
const std::vector<std::string>& input_names,
|
|
std::vector<const LoDTensor*>* inputs, // NOLINT
|
|
std::vector<const LoDTensor*>* outputs); // NOLINT
|
|
|
|
// Push sparse variables to server in Async mode
|
|
// Param<In>: scope, table_id, fea_keys, sparse_grad_names
|
|
// Param<Out>: push_values, push_sparse_status
|
|
/*
|
|
void PushSparseVarsAsync(
|
|
const Scope& scope,
|
|
const uint64_t table_id,
|
|
const std::vector<uint64_t>& fea_keys,
|
|
const std::vector<std::string>& sparse_grad_names,
|
|
std::vector<std::vector<float>>* push_values,
|
|
std::vector<::std::future<int32_t>>* push_sparse_status);
|
|
*/
|
|
|
|
// init server
|
|
void InitServer(const std::string& dist_desc, int index);
|
|
// init trainer
|
|
void InitWorker(const std::string& dist_desc,
|
|
const std::vector<uint64_t>& host_sign_list, int node_num,
|
|
int index);
|
|
// stop server
|
|
void StopServer();
|
|
// finalize worker to make worker can be stop
|
|
void FinalizeWorker();
|
|
// run server
|
|
uint64_t RunServer();
|
|
// run server with ip port
|
|
uint64_t RunServer(const std::string& ip, uint32_t port);
|
|
// gather server ip
|
|
void GatherServers(const std::vector<uint64_t>& host_sign_list, int node_num);
|
|
// gather client ip
|
|
void GatherClients(const std::vector<uint64_t>& host_sign_list);
|
|
// get client info
|
|
std::vector<uint64_t> GetClientsInfo();
|
|
// create client to client connection
|
|
void CreateClient2ClientConnection();
|
|
// flush all push requests
|
|
void ClientFlush();
|
|
// load from paddle model
|
|
void LoadFromPaddleModel(Scope& scope, const uint64_t table_id, // NOLINT
|
|
std::vector<std::string> var_list,
|
|
std::string model_path, std::string model_proto_file,
|
|
std::vector<std::string> table_var_list,
|
|
bool load_combine);
|
|
|
|
void PrintTableStat(const uint64_t table_id);
|
|
// mode = 0, load all feature
|
|
// mode = 1, laod delta feature, which means load diff
|
|
void LoadModel(const std::string& path, const int mode);
|
|
// mode = 0, load all feature
|
|
// mode = 1, laod delta feature, which means load diff
|
|
void LoadModelOneTable(const uint64_t table_id, const std::string& path,
|
|
const int mode);
|
|
// mode = 0, save all feature
|
|
// mode = 1, save delta feature, which means save diff
|
|
void SaveModel(const std::string& path, const int mode);
|
|
// get save cache threshold
|
|
double GetCacheThreshold(int table_id);
|
|
// shuffle cache model between servers
|
|
void CacheShuffle(int table_id, const std::string& path, const int mode,
|
|
const double cache_threshold);
|
|
// save cache model
|
|
// cache model can speed up online predict
|
|
int32_t SaveCache(int table_id, const std::string& path, const int mode);
|
|
// copy feasign key/value from src_table_id to dest_table_id
|
|
int32_t CopyTable(const uint64_t src_table_id, const uint64_t dest_table_id);
|
|
// copy feasign key/value from src_table_id to dest_table_id
|
|
int32_t CopyTableByFeasign(const uint64_t src_table_id,
|
|
const uint64_t dest_table_id,
|
|
const std::vector<uint64_t>& feasign_list);
|
|
// clear all models, release their memory
|
|
void ClearModel();
|
|
// clear one table
|
|
void ClearOneTable(const uint64_t table_id);
|
|
// shrink sparse table
|
|
void ShrinkSparseTable(int table_id);
|
|
// shrink dense table
|
|
void ShrinkDenseTable(int table_id, Scope* scope,
|
|
std::vector<std::string> var_list, float decay,
|
|
int emb_dim);
|
|
|
|
typedef std::function<int32_t(int, int, const std::string&)> MsgHandlerFunc;
|
|
// register client to client communication
|
|
int RegisterClientToClientMsgHandler(int msg_type, MsgHandlerFunc handler);
|
|
// send client to client message
|
|
std::future<int32_t> SendClientToClientMsg(int msg_type, int to_client_id,
|
|
const std::string& msg);
|
|
// FleetWrapper singleton
|
|
static std::shared_ptr<FleetWrapper> GetInstance() {
|
|
if (NULL == s_instance_) {
|
|
s_instance_.reset(new paddle::framework::FleetWrapper());
|
|
}
|
|
return s_instance_;
|
|
}
|
|
// this performs better than rand_r, especially large data
|
|
std::default_random_engine& LocalRandomEngine();
|
|
|
|
#ifdef PADDLE_WITH_PSLIB
|
|
static std::shared_ptr<paddle::distributed::PSlib> pslib_ptr_;
|
|
#endif
|
|
|
|
private:
|
|
static std::shared_ptr<FleetWrapper> s_instance_;
|
|
#ifdef PADDLE_WITH_PSLIB
|
|
std::map<uint64_t, std::vector<paddle::ps::Region>> _regions;
|
|
#endif
|
|
|
|
size_t GetAbsoluteSum(size_t start, size_t end, size_t level,
|
|
const framework::LoD& lod);
|
|
|
|
protected:
|
|
static bool is_initialized_;
|
|
bool scale_sparse_gradient_with_batch_size_;
|
|
int32_t sleep_seconds_before_fail_exit_;
|
|
int client2client_request_timeout_ms_;
|
|
int client2client_connect_timeout_ms_;
|
|
int client2client_max_retry_;
|
|
std::unique_ptr<::ThreadPool> local_pull_pool_{nullptr};
|
|
int pull_local_thread_num_;
|
|
std::unique_ptr<::ThreadPool> pull_to_local_pool_{nullptr};
|
|
int local_table_shard_num_;
|
|
DISABLE_COPY_AND_ASSIGN(FleetWrapper);
|
|
};
|
|
|
|
} // end namespace framework
|
|
} // end namespace paddle
|