You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
188 lines
5.7 KiB
188 lines
5.7 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle/fluid/imperative/layer.h"
|
|
#include <deque>
|
|
#include <limits>
|
|
#include <map>
|
|
#include <random>
|
|
#include <utility>
|
|
|
|
#include "paddle/fluid/framework/lod_tensor.h"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/framework/operator.h"
|
|
#include "paddle/fluid/string/printf.h"
|
|
|
|
namespace paddle {
|
|
namespace imperative {
|
|
|
|
using framework::Variable;
|
|
|
|
void AddTo(Variable* src, Variable* dst) {
|
|
framework::LoDTensor* dst_tensor = dst->GetMutable<framework::LoDTensor>();
|
|
framework::LoDTensor* src_tensor = src->GetMutable<framework::LoDTensor>();
|
|
// FIXME(minqiyang): loss_grad op will pass a zero grad of label
|
|
// ugly fix for it
|
|
if (src_tensor->numel() == 0) {
|
|
return;
|
|
}
|
|
PADDLE_ENFORCE(dst_tensor->numel() == src_tensor->numel(),
|
|
"dst_numel %lld vs. src_numel %lld", dst_tensor->numel(),
|
|
src_tensor->numel());
|
|
float* dst_data = dst_tensor->mutable_data<float>(platform::CPUPlace());
|
|
const float* src_data = src_tensor->data<float>();
|
|
for (size_t i = 0; i < src_tensor->numel(); ++i) {
|
|
dst_data[i] += src_data[i];
|
|
}
|
|
}
|
|
|
|
class Autograd {
|
|
public:
|
|
Autograd() {}
|
|
|
|
void RunBackward(VarBase* var) {
|
|
if (var->stop_gradient_) {
|
|
return;
|
|
}
|
|
|
|
std::deque<OpBase*> ready;
|
|
ready.push_back(var->pre_op_);
|
|
|
|
std::map<OpBase*, int> dep_counts = ComputeDepCounts(var->pre_op_);
|
|
|
|
while (!ready.empty()) {
|
|
OpBase* ready_op = ready.front();
|
|
ready.pop_front();
|
|
std::map<std::string, std::vector<VarBase*>> input_grads =
|
|
ready_op->ApplyGrad();
|
|
|
|
for (auto it : input_grads) {
|
|
const std::vector<VarBase*>& ingrads = it.second;
|
|
for (size_t i = 0; i < ingrads.size(); ++i) {
|
|
if (!ingrads[i]) continue;
|
|
if (ready_op->input_vars_[it.first][i]->stop_gradient_) {
|
|
continue;
|
|
}
|
|
OpBase* pre_op = ready_op->pre_ops_[it.first][i];
|
|
if (!pre_op) continue;
|
|
|
|
dep_counts[pre_op] -= 1;
|
|
PADDLE_ENFORCE(dep_counts[pre_op] >= 0);
|
|
bool pre_op_ready = dep_counts[pre_op] == 0;
|
|
if (pre_op_ready) {
|
|
ready.push_back(pre_op);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
std::map<OpBase*, int> ComputeDepCounts(OpBase* op) {
|
|
std::map<OpBase*, int> ret;
|
|
|
|
std::deque<OpBase*> queue;
|
|
queue.push_back(op);
|
|
std::unordered_set<OpBase*> visited;
|
|
visited.insert(op);
|
|
while (!queue.empty()) {
|
|
OpBase* candidate = queue.front();
|
|
queue.pop_front();
|
|
for (auto it : candidate->pre_ops_) {
|
|
for (OpBase* pre_op : it.second) {
|
|
if (!pre_op) continue;
|
|
if (visited.find(pre_op) == visited.end()) {
|
|
visited.insert(pre_op);
|
|
queue.push_back(pre_op);
|
|
}
|
|
ret[pre_op] += 1;
|
|
}
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
};
|
|
|
|
framework::LoDTensor& VarBase::Grad() {
|
|
VLOG(3) << "get var grad " << var_desc_->Name();
|
|
return *grads_->GetMutable<framework::LoDTensor>();
|
|
}
|
|
|
|
std::map<std::string, std::vector<VarBase*>> OpBase::ApplyGrad() {
|
|
if (!grad_op_desc_) {
|
|
LOG(WARNING) << "op with no grad: " << op_desc_->Type();
|
|
return {};
|
|
}
|
|
VLOG(3) << "op grad " << grad_op_desc_->Type();
|
|
|
|
std::vector<std::unique_ptr<framework::Variable>> tmp_vars;
|
|
std::map<std::string, std::vector<framework::Variable*>> grad_outputs;
|
|
for (auto it : grad_output_vars_) {
|
|
auto& outputs = grad_outputs[it.first];
|
|
for (size_t i = 0; i < it.second.size(); ++i) {
|
|
// Allocate a new variable
|
|
Variable* tmp_var = new framework::Variable();
|
|
tmp_var->GetMutable<framework::LoDTensor>();
|
|
|
|
tmp_vars.emplace_back(tmp_var);
|
|
outputs.push_back(tmp_var);
|
|
}
|
|
}
|
|
|
|
framework::RuntimeContext ctx(grad_input_vars_, grad_outputs);
|
|
|
|
// No need to do compile time infer shape here.
|
|
// grad_op_desc_->InferShape(*block_);
|
|
grad_op_desc_->InferVarType(block_);
|
|
|
|
std::unique_ptr<framework::OperatorBase> opbase =
|
|
framework::OpRegistry::CreateOp(*grad_op_desc_);
|
|
framework::OperatorWithKernel* op_kernel =
|
|
dynamic_cast<framework::OperatorWithKernel*>(opbase.get());
|
|
PADDLE_ENFORCE_NOT_NULL(op_kernel, "only support op with kernel");
|
|
|
|
framework::Scope scope;
|
|
platform::CPUPlace place;
|
|
PreparedOp p = PreparedOp::Prepare(ctx, *op_kernel, place);
|
|
p.op.RuntimeInferShape(scope, place, ctx);
|
|
p.func(framework::ExecutionContext(p.op, scope, *p.dev_ctx, p.ctx));
|
|
|
|
for (auto it : grad_output_vars_) {
|
|
auto& outputs = grad_outputs[it.first];
|
|
auto& origin_outputs = it.second;
|
|
|
|
for (size_t i = 0; i < outputs.size(); ++i) {
|
|
framework::Variable* orig_grad = origin_outputs[i];
|
|
AddTo(outputs[i], orig_grad);
|
|
}
|
|
}
|
|
return input_vars_;
|
|
}
|
|
|
|
void VarBase::RunBackward() {
|
|
if (!pre_op_) return;
|
|
|
|
auto grads_t = grads_->GetMutable<framework::LoDTensor>();
|
|
float* data = grads_t->mutable_data<float>(platform::CPUPlace());
|
|
std::fill(data, data + grads_t->numel(), 1.0);
|
|
|
|
PADDLE_ENFORCE(
|
|
grads_ ==
|
|
pre_op_->output_vars_[pre_op_out_name_][pre_op_out_idx_]->grads_);
|
|
Autograd().RunBackward(this);
|
|
}
|
|
|
|
} // namespace imperative
|
|
} // namespace paddle
|