You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
176 lines
6.6 KiB
176 lines
6.6 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
#include "paddle/framework/eigen.h"
|
|
#include "paddle/framework/op_registry.h"
|
|
#include "paddle/operators/math/math_function.h"
|
|
#include "paddle/operators/math/pooling.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
|
|
class PoolOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(framework::InferShapeContext* ctx) const override;
|
|
};
|
|
|
|
class PoolOpGrad : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(framework::InferShapeContext* ctx) const override;
|
|
};
|
|
|
|
class Pool2dOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
Pool2dOpMaker(framework::OpProto* proto,
|
|
framework::OpAttrChecker* op_checker);
|
|
};
|
|
|
|
class Pool3dOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
Pool3dOpMaker(framework::OpProto* proto,
|
|
framework::OpAttrChecker* op_checker);
|
|
};
|
|
|
|
template <typename Place, typename T>
|
|
class PoolKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
const Tensor* in_x = context.Input<Tensor>("X");
|
|
Tensor* out = context.Output<Tensor>("Out");
|
|
|
|
std::string pooling_type = context.Attr<std::string>("poolingType");
|
|
std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
|
|
std::vector<int> strides = context.Attr<std::vector<int>>("strides");
|
|
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
|
|
if (context.Attr<bool>("globalPooling")) {
|
|
for (size_t i = 0; i < ksize.size(); ++i) {
|
|
ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
|
|
}
|
|
}
|
|
|
|
switch (ksize.size()) {
|
|
case 2: {
|
|
if (pooling_type == "max") {
|
|
paddle::operators::math::Pool2dFunctor<
|
|
Place, paddle::operators::math::MaxPool<T>, T>
|
|
pool2d_forward;
|
|
paddle::operators::math::MaxPool<T> pool_process;
|
|
pool2d_forward(context.device_context(), *in_x, *out, ksize, strides,
|
|
paddings, pool_process);
|
|
|
|
} else if (pooling_type == "avg") {
|
|
paddle::operators::math::Pool2dFunctor<
|
|
Place, paddle::operators::math::AvgPool<T>, T>
|
|
pool2d_forward;
|
|
paddle::operators::math::AvgPool<T> pool_process;
|
|
pool2d_forward(context.device_context(), *in_x, *out, ksize, strides,
|
|
paddings, pool_process);
|
|
}
|
|
} break;
|
|
case 3: {
|
|
if (pooling_type == "max") {
|
|
paddle::operators::math::Pool3dFunctor<
|
|
Place, paddle::operators::math::MaxPool<T>, T>
|
|
pool3d_forward;
|
|
paddle::operators::math::MaxPool<T> pool_process;
|
|
pool3d_forward(context.device_context(), *in_x, *out, ksize, strides,
|
|
paddings, pool_process);
|
|
} else if (pooling_type == "avg") {
|
|
paddle::operators::math::Pool3dFunctor<
|
|
Place, paddle::operators::math::AvgPool<T>, T>
|
|
pool3d_forward;
|
|
paddle::operators::math::AvgPool<T> pool_process;
|
|
pool3d_forward(context.device_context(), *in_x, *out, ksize, strides,
|
|
paddings, pool_process);
|
|
}
|
|
} break;
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename Place, typename T>
|
|
class PoolGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
const Tensor* in_x = context.Input<Tensor>("X");
|
|
const Tensor* out = context.Input<Tensor>("Out");
|
|
const Tensor* out_grad =
|
|
context.Input<Tensor>(framework::GradVarName("Out"));
|
|
Tensor* in_x_grad = context.Output<Tensor>(framework::GradVarName("X"));
|
|
|
|
std::string pooling_type = context.Attr<std::string>("poolingType");
|
|
std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
|
|
std::vector<int> strides = context.Attr<std::vector<int>>("strides");
|
|
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
|
|
|
|
if (context.Attr<bool>("globalPooling")) {
|
|
for (size_t i = 0; i < ksize.size(); ++i)
|
|
ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
|
|
}
|
|
|
|
if (in_x_grad) {
|
|
in_x_grad->mutable_data<T>(context.GetPlace());
|
|
auto temp = framework::EigenVector<T>::Flatten(*in_x_grad);
|
|
temp.device(context.GetEigenDevice<Place>()) =
|
|
temp.constant(static_cast<T>(0));
|
|
|
|
switch (ksize.size()) {
|
|
case 2: {
|
|
if (pooling_type == "max") {
|
|
paddle::operators::math::MaxPool2dGradFunctor<Place, T>
|
|
pool2d_backward;
|
|
pool2d_backward(context.device_context(), *in_x, *in_x_grad, *out,
|
|
*out_grad, ksize, strides, paddings);
|
|
} else if (pooling_type == "avg") {
|
|
paddle::operators::math::Pool2dGradFunctor<
|
|
Place, paddle::operators::math::AvgPoolGrad<T>, T>
|
|
pool2d_backward;
|
|
paddle::operators::math::AvgPoolGrad<T> pool_process;
|
|
pool2d_backward(context.device_context(), *in_x, *in_x_grad, *out,
|
|
*out_grad, ksize, strides, paddings, pool_process);
|
|
}
|
|
} break;
|
|
case 3: {
|
|
if (pooling_type == "max") {
|
|
paddle::operators::math::MaxPool3dGradFunctor<Place, T>
|
|
pool3d_backward;
|
|
pool3d_backward(context.device_context(), *in_x, *in_x_grad, *out,
|
|
*out_grad, ksize, strides, paddings);
|
|
} else if (pooling_type == "avg") {
|
|
paddle::operators::math::Pool3dGradFunctor<
|
|
Place, paddle::operators::math::AvgPoolGrad<T>, T>
|
|
pool3d_backward;
|
|
paddle::operators::math::AvgPoolGrad<T> pool_process;
|
|
pool3d_backward(context.device_context(), *in_x, *in_x_grad, *out,
|
|
*out_grad, ksize, strides, paddings, pool_process);
|
|
}
|
|
} break;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|