You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
190 lines
6.5 KiB
190 lines
6.5 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/reduce_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using framework::Tensor;
|
|
|
|
class ReduceOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"Input(X) of ReduceOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Output(Out) of ReduceOp should not be null.");
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto x_rank = x_dims.size();
|
|
PADDLE_ENFORCE_LE(x_rank, 6, "Tensors with rank at most 6 are supported.");
|
|
int dim = ctx->Attrs().Get<int>("dim");
|
|
if (dim < 0) dim = x_rank + dim;
|
|
PADDLE_ENFORCE_LT(
|
|
dim, x_rank,
|
|
"The dim should be in the range [-rank(input), rank(input)).");
|
|
bool keep_dim = ctx->Attrs().Get<bool>("keep_dim");
|
|
auto dims_vector = vectorize(x_dims);
|
|
if (keep_dim || x_rank == 1) {
|
|
dims_vector[dim] = 1;
|
|
} else {
|
|
dims_vector.erase(dims_vector.begin() + dim);
|
|
}
|
|
auto out_dims = framework::make_ddim(dims_vector);
|
|
ctx->SetOutputDim("Out", out_dims);
|
|
if (dim != 0) {
|
|
// Only pass LoD when not reducing on the first dim.
|
|
ctx->ShareLoD("X", /*->*/ "Out");
|
|
}
|
|
}
|
|
};
|
|
|
|
class ReduceGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
|
"Input(Out@GRAD) should not be null.");
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto x_rank = x_dims.size();
|
|
PADDLE_ENFORCE_LE(x_rank, 6, "Tensors with rank at most 6 are supported.");
|
|
int dim = ctx->Attrs().Get<int>("dim");
|
|
if (dim < 0) dim = x_rank + dim;
|
|
PADDLE_ENFORCE_LT(
|
|
dim, x_rank,
|
|
"The dim should be in the range [-rank(input), rank(input)).");
|
|
auto x_grad_name = framework::GradVarName("X");
|
|
if (ctx->HasOutput(x_grad_name)) {
|
|
ctx->SetOutputDim(x_grad_name, x_dims);
|
|
}
|
|
}
|
|
};
|
|
|
|
class ReduceOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
ReduceOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput(
|
|
"X",
|
|
"(Tensor) The input tensor. Tensors with rank at most 6 are supported");
|
|
AddOutput("Out", "(Tensor) The result tensor.");
|
|
AddAttr<int>(
|
|
"dim",
|
|
"(int, default 1) The dimension to reduce. "
|
|
"Must be in the range [-rank(input), rank(input)). "
|
|
"If `dim < 0`, the dim to reduce is `rank + dim`. "
|
|
"Noting that reducing on the first dim will make the LoD info lost.")
|
|
.SetDefault(0);
|
|
AddAttr<bool>("keep_dim",
|
|
"(bool, default false) "
|
|
"If true, retain the reduced dimension with length 1.")
|
|
.SetDefault(false);
|
|
comment_ = R"DOC(
|
|
{ReduceOP} operator computes the {reduce} of input tensor along the given dimension.
|
|
The result tensor has 1 fewer dimension than the input unless `keep_dim` is true.
|
|
)DOC";
|
|
AddComment(comment_);
|
|
}
|
|
|
|
protected:
|
|
std::string comment_;
|
|
|
|
void Replace(std::string &src, std::string from, std::string to) {
|
|
std::size_t len_from = std::strlen(from.c_str());
|
|
std::size_t len_to = std::strlen(to.c_str());
|
|
for (std::size_t pos = src.find(from); pos != std::string::npos;
|
|
pos = src.find(from, pos + len_to)) {
|
|
src.replace(pos, len_from, to);
|
|
}
|
|
}
|
|
|
|
void SetComment(std::string name, std::string op) {
|
|
Replace(comment_, "{ReduceOP}", name);
|
|
Replace(comment_, "{reduce}", op);
|
|
}
|
|
};
|
|
|
|
class ReduceSumOpMaker : public ReduceOpMaker {
|
|
public:
|
|
ReduceSumOpMaker(framework::OpProto *proto,
|
|
framework::OpAttrChecker *op_checker)
|
|
: ReduceOpMaker(proto, op_checker) {
|
|
SetComment("ReduceSum", "sum");
|
|
AddComment(comment_);
|
|
}
|
|
};
|
|
|
|
class ReduceMeanOpMaker : public ReduceOpMaker {
|
|
public:
|
|
ReduceMeanOpMaker(framework::OpProto *proto,
|
|
framework::OpAttrChecker *op_checker)
|
|
: ReduceOpMaker(proto, op_checker) {
|
|
SetComment("ReduceMean", "mean");
|
|
AddComment(comment_);
|
|
}
|
|
};
|
|
|
|
class ReduceMaxOpMaker : public ReduceOpMaker {
|
|
public:
|
|
ReduceMaxOpMaker(framework::OpProto *proto,
|
|
framework::OpAttrChecker *op_checker)
|
|
: ReduceOpMaker(proto, op_checker) {
|
|
SetComment("ReduceMax", "max");
|
|
AddComment(comment_);
|
|
}
|
|
};
|
|
|
|
class ReduceMinOpMaker : public ReduceOpMaker {
|
|
public:
|
|
ReduceMinOpMaker(framework::OpProto *proto,
|
|
framework::OpAttrChecker *op_checker)
|
|
: ReduceOpMaker(proto, op_checker) {
|
|
SetComment("ReduceMin", "min");
|
|
AddComment(comment_);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OP(reduce_sum, ops::ReduceOp, ops::ReduceSumOpMaker, reduce_sum_grad,
|
|
ops::ReduceGradOp);
|
|
|
|
REGISTER_OP(reduce_mean, ops::ReduceOp, ops::ReduceMeanOpMaker,
|
|
reduce_mean_grad, ops::ReduceGradOp);
|
|
|
|
REGISTER_OP(reduce_max, ops::ReduceOp, ops::ReduceMaxOpMaker, reduce_max_grad,
|
|
ops::ReduceGradOp);
|
|
|
|
REGISTER_OP(reduce_min, ops::ReduceOp, ops::ReduceMinOpMaker, reduce_min_grad,
|
|
ops::ReduceGradOp);
|
|
|
|
#define REGISTER_REDUCE_CPU_KERNEL(reduce_type, functor, grad_functor) \
|
|
REGISTER_OP_CPU_KERNEL( \
|
|
reduce_type, \
|
|
ops::ReduceKernel<paddle::platform::CPUPlace, float, ops::functor>); \
|
|
REGISTER_OP_CPU_KERNEL(reduce_type##_grad, \
|
|
ops::ReduceGradKernel<paddle::platform::CPUPlace, \
|
|
float, ops::grad_functor>);
|
|
|
|
FOR_EACH_KERNEL_FUNCTOR(REGISTER_REDUCE_CPU_KERNEL);
|