You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
151 lines
6.3 KiB
151 lines
6.3 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/sigmoid_cross_entropy_with_logits_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using framework::Tensor;
|
|
|
|
class SigmoidCrossEntropyWithLogitsOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Labels"),
|
|
"Input(Labels) should be not null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) should be not null.");
|
|
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto labels_dims = ctx->GetInputDim("Labels");
|
|
PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank should be 2.");
|
|
PADDLE_ENFORCE_EQ(labels_dims.size(), 2,
|
|
"Input(Labels)'s rank should be 2.");
|
|
PADDLE_ENFORCE_EQ(x_dims[0], labels_dims[0],
|
|
"The 1st dimension of Input(X) and Input(Labels) should "
|
|
"be equal.");
|
|
PADDLE_ENFORCE_EQ(x_dims[1], labels_dims[1],
|
|
"The 2nd dimension of Input(X) and Input(Labels) should "
|
|
"be equal.");
|
|
|
|
ctx->SetOutputDim("Out", x_dims);
|
|
ctx->ShareLoD("X", /*->*/ "Out");
|
|
}
|
|
};
|
|
|
|
class SigmoidCrossEntropyWithLogitsGradOp
|
|
: public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Labels"),
|
|
"Input(Labels) should be not null.");
|
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
|
"Input(Out@GRAD) shoudl be not null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
|
|
"Output(X@GRAD) should be not null.");
|
|
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto labels_dims = ctx->GetInputDim("Labels");
|
|
auto dout_dims = ctx->GetInputDim(framework::GradVarName("Out"));
|
|
PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank should be 2.");
|
|
PADDLE_ENFORCE_EQ(labels_dims.size(), 2,
|
|
"Input(Labels)'s rank should be 2.");
|
|
PADDLE_ENFORCE_EQ(dout_dims.size(), 2,
|
|
"Input(Out@Grad)'s rank should be 2.");
|
|
PADDLE_ENFORCE_EQ(x_dims[0], labels_dims[0],
|
|
"The 1st dimension of Input(X) and Input(Labels) should "
|
|
"be equal.");
|
|
PADDLE_ENFORCE_EQ(x_dims[1], labels_dims[1],
|
|
"The 2nd dimension of Input(X) and Input(Labels) should "
|
|
"be equal.");
|
|
PADDLE_ENFORCE_EQ(x_dims[0], dout_dims[0],
|
|
"The 1st dimension of Input(X) and Input(Out@Grad) "
|
|
"should be equal.");
|
|
PADDLE_ENFORCE_EQ(x_dims[1], dout_dims[1],
|
|
"The 2nd dimension of Input(X) and Input(Out@Grad) "
|
|
"should be equal.");
|
|
|
|
ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
|
|
}
|
|
};
|
|
|
|
class SigmoidCrossEntropyWithLogitsOpMaker
|
|
: public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
SigmoidCrossEntropyWithLogitsOpMaker(framework::OpProto* proto,
|
|
framework::OpAttrChecker* op_checker)
|
|
: framework::OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X",
|
|
"(Tensor, default Tensor<float>), a 2-D tensor with shape N x D, "
|
|
"where N is the batch size and D is the number of classes. "
|
|
"This input is a tensor of logits computed by the previous "
|
|
" operator. Logits are unscaled log probabilities given as "
|
|
"log(p/(1-p)).");
|
|
AddInput("Labels",
|
|
"(Tensor, default Tensor<float>), a 2-D tensor of the same type "
|
|
"and shape as X. This input is a tensor of probabalistic labels "
|
|
"for each logit");
|
|
AddOutput("Out",
|
|
"(Tensor, default Tensor<float>), a 2-D tensor with shape N x D "
|
|
" of elementwise logistic losses.");
|
|
AddComment(R"DOC(
|
|
SigmoidCrossEntropyWithLogits Operator.
|
|
|
|
This measures the elementwise probability error in discrete classification tasks
|
|
in which each class is independent. This can be thought of as predicting labels
|
|
for a data-point that are not mutually exclusive. For example, a news article
|
|
can be about politics, technology or sports at the same time or none of these.
|
|
|
|
The logistic loss is given as follows:
|
|
|
|
loss = -Labels * log(sigmoid(X)) - (1 - Labels) * log(1 - sigmoid(X))
|
|
|
|
We know that sigmoid(X) = (1 / (1 + exp(-X))). By substituting this we get
|
|
|
|
loss = X - X * Labels + log(1 + exp(-X))
|
|
|
|
For stability and to prevent overflow of exp(-X) when X < 0,
|
|
we can reformulate the loss as follows:
|
|
|
|
loss = max(X, 0) - X * Labels + log(1 + exp(-abs(X)))
|
|
|
|
Both the input `X` and `Labels` can carry the LoD (Level of Details) information.
|
|
However the output only shares the LoD with input `X`.
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP(sigmoid_cross_entropy_with_logits,
|
|
ops::SigmoidCrossEntropyWithLogitsOp,
|
|
ops::SigmoidCrossEntropyWithLogitsOpMaker,
|
|
sigmoid_cross_entropy_with_logits_grad,
|
|
ops::SigmoidCrossEntropyWithLogitsGradOp);
|
|
REGISTER_OP_CPU_KERNEL(sigmoid_cross_entropy_with_logits,
|
|
ops::SigmoidCrossEntropyWithLogitsKernel<
|
|
paddle::platform::CPUPlace, float>);
|
|
REGISTER_OP_CPU_KERNEL(sigmoid_cross_entropy_with_logits_grad,
|
|
ops::SigmoidCrossEntropyWithLogitsGradKernel<
|
|
paddle::platform::CPUPlace, float>);
|