You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
89 lines
3.3 KiB
89 lines
3.3 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include "paddle/framework/eigen.h"
|
|
#include "paddle/framework/op_registry.h"
|
|
#include "paddle/operators/math/cross_entropy.h"
|
|
#include "paddle/operators/math/softmax.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
template <typename T, int MajorType = Eigen::RowMajor,
|
|
typename IndexType = Eigen::DenseIndex>
|
|
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
|
|
|
|
template <typename T>
|
|
class SoftmaxWithCrossEntropyKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
PADDLE_ENFORCE(platform::is_cpu_place(context.GetPlace()),
|
|
"This kernel only runs on CPU.");
|
|
const Tensor* logits = context.Input<Tensor>("Logits");
|
|
const Tensor* labels = context.Input<Tensor>("Label");
|
|
Tensor* softmax = context.Output<Tensor>("Softmax");
|
|
Tensor* loss = context.Output<Tensor>("Loss");
|
|
|
|
softmax->mutable_data<T>(context.GetPlace());
|
|
loss->mutable_data<T>(context.GetPlace());
|
|
|
|
math::SoftmaxFunctor<platform::CPUPlace, T>()(context.device_context(),
|
|
logits, softmax);
|
|
math::CrossEntropyFunctor<platform::CPUPlace, T>()(
|
|
context.device_context(), loss, softmax, labels,
|
|
context.Attr<bool>("softLabel"));
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class SoftmaxWithCrossEntropyGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
const Tensor* out_grad =
|
|
context.Input<Tensor>(framework::GradVarName("Loss"));
|
|
const Tensor* labels = context.Input<Tensor>("Label");
|
|
Tensor* logit_grad =
|
|
context.Output<Tensor>(framework::GradVarName("Logits"));
|
|
logit_grad->ShareDataWith<T>(*context.Input<Tensor>("Softmax"));
|
|
|
|
const int class_num = logit_grad->dims()[1];
|
|
if (context.Attr<bool>("softLabel")) {
|
|
auto out_grad_mat = EigenMatrix<T>::From(*out_grad);
|
|
auto logit_grad_mat = EigenMatrix<T>::From(*logit_grad);
|
|
auto lbl_mat = EigenMatrix<T>::From(*labels);
|
|
|
|
logit_grad_mat.device(context.GetEigenDevice<platform::CPUPlace>()) =
|
|
logit_grad_mat *
|
|
out_grad_mat.broadcast(Eigen::DSizes<int, 2>(1, class_num)) -
|
|
lbl_mat;
|
|
} else {
|
|
const int batch_size = logit_grad->dims()[0];
|
|
const int* label_data = labels->data<int>();
|
|
const T* out_grad_data = out_grad->data<T>();
|
|
T* logit_grad_data = logit_grad->data<T>();
|
|
|
|
for (int i = 0; i < batch_size; ++i) {
|
|
int index = i * class_num + label_data[i];
|
|
logit_grad_data[index] =
|
|
(out_grad_data[i] * logit_grad_data[index] - 1.);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|