You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/framework/details/build_strategy.h

204 lines
7.8 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <memory>
#include <string>
#include <unordered_set>
#include <utility>
#include <vector>
#include "boost/optional.hpp"
#include "paddle/fluid/framework/ir/pass_builder.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace framework {
namespace ir {
class Graph;
class PassBuilder;
} // namespace ir
} // namespace framework
namespace platform {
class NCCLCommunicator;
} // namespace platform
} // namespace paddle
#if defined(PADDLE_WITH_NCCL)
#include "paddle/fluid/platform/nccl_helper.h"
#endif
namespace paddle {
namespace framework {
namespace details {
struct BuildStrategy {
// ParallelExecutor supports two modes of ReduceStrategy, kAllReduce and
// kReduce, for CPU and GPU. If you use kAllReduce, different threads
// optimize their parameters separately. If you use kReduce, the optimizations
// of parameters are distributed to different threads.
// For example, a model has 100 parameters and is running with four threads,
// if you choose kAllReduce, every thread is to optimize 100 parameters
// separately, if you choose kReduce, every thread is to optimize 25
// parameters.
// Of particular note is, if you use kReduce when using CPU training,
// all the parameters are shared between different threads. This feature will
// save memory.
// FIXME(zcd): The result of the two modes(kAllReduce and kReduce) maybe not
// equal for GPU. Because, the result of the different order of summing maybe
// different, for example, the result of `a+b+c+d` may be different with the
// result of `c+a+b+d`.
// For GPU, the implementation of kAllReduce and kReduce is adopted NCCL,
// so the result of kAllReduce and kReduce maybe not equal.
// For CPU, if you want to fix the order of summing to make the result
// of kAllReduce and kReduce no diff, you can add
// `FLAGS_cpu_deterministic=true` to env.
enum class ReduceStrategy { kAllReduce = 0, kReduce = 1 };
enum class GradientScaleStrategy {
kCoeffNumDevice = 0,
kOne = 1,
// user can customize gradient scale to use, and just feed
// it into exe.run().
kCustomized = 2,
};
ReduceStrategy reduce_{ReduceStrategy::kAllReduce};
GradientScaleStrategy gradient_scale_{GradientScaleStrategy::kCoeffNumDevice};
std::string debug_graphviz_path_{""};
// Add dependency between backward ops and optimization ops, make sure that
// all the backward ops are finished before running the optimization ops.
// It might make the training speed of data parallelism faster.
bool enable_backward_optimizer_op_deps_{true};
// TODO(dev-paddle): enable_sequential_execution depends on
// kStaleProgramOpDescs, it is not appropriate, because kStaleProgramOpDescs
// will be removed in the near future.
bool enable_sequential_execution_{false};
bool remove_unnecessary_lock_{true};
// TODO(dev-paddle): cache_runtime_context may cause some models to hang up
// while running.
bool cache_runtime_context_{false};
// Operator fusion
// TODO(dev-paddle): fuse_elewise_add_act_ops may cause some models have
// cycle.
bool fuse_bn_act_ops_{false};
bool fuse_elewise_add_act_ops_{false};
bool enable_auto_fusion_{false};
// Fuse_all_optimizer_ops and fuse_all_reduce_ops require that gradients
// should not be sparse types
boost::optional<bool> fuse_all_optimizer_ops_{false};
boost::optional<bool> fuse_all_reduce_ops_{boost::none};
// fuse_relu_depthwise_conv can fuse the `relu ->
// depthwise_conv`
bool fuse_relu_depthwise_conv_{false};
// NOTE(zcd): In reduce mode, fusing broadcast ops may make the program
// faster. Because fusing broadcast OP equals delaying the execution of all
// broadcast Ops, in this case, all nccl streams are used only for reduce
// operations for a period of time.
boost::optional<bool> fuse_broadcast_ops_{boost::none};
// replace batch_norm with sync_batch_norm.
bool sync_batch_norm_{false};
// mkldnn_enabled_op_types specify the operator type list to
// use MKLDNN acceleration. It is null in default, means
// that all the operators supported by MKLDNN will be
// accelerated. And it should not be set when
// FLAGS_use_mkldnn=false
std::unordered_set<std::string> mkldnn_enabled_op_types_;
// By default, memory_optimize would be opened if gc is disabled, and
// be closed if gc is enabled.
// Users can forcely enable/disable memory_optimize by setting True/False.
boost::optional<bool> memory_optimize_{boost::none};
// Turn on inplace by default.
bool enable_inplace_{true};
// Turn off inplace addto by default.
bool enable_addto_{false};
// FIXME(zcd): is_distribution_ is a temporary field, because in pserver mode,
// num_trainers is 1, so the current fields of build_strategy doesn't tell if
// it's distributed model.
bool is_distribution_{false};
bool async_mode_{false};
int num_trainers_{1};
int trainer_id_{0};
std::vector<std::string> trainers_endpoints_;
// NCCL config
size_t nccl_comm_num_{1};
// The picture is here:
// https://github.com/PaddlePaddle/Paddle/pull/17263#discussion_r285411396
bool use_hierarchical_allreduce_{false};
// Nccl ranks in a node when use hierarchical allreduce, it's set to gpu
// cards' number in most cases.
size_t hierarchical_allreduce_inter_nranks_{0};
// Nccl ranks bewteen nodes when use hierarchical allreduce, it's set to
// nodes number.
size_t hierarchical_allreduce_exter_nranks_{0};
// NOTE:
// Before you add new options, think if it's a general strategy that works
// with other strategy. If not, the strategy should be created through
// CreatePassesFromStrategy and the pass can be managed separately.
// User normally doesn't need to call this API.
// The PassBuilder allows for more customized insert, remove of passes
// from python side.
// A new PassBuilder is created based on configs defined above and
// passes are owned by the PassBuilder.
std::shared_ptr<ir::PassBuilder> CreatePassesFromStrategy(
bool finalize_strategy) const;
bool IsFinalized() const { return is_finalized_; }
bool IsMultiDevPass(const std::string &pass_name) const;
// Apply the passes built by the pass_builder_. The passes will be
// applied to the Program and output an ir::Graph.
ir::Graph *Apply(ir::Graph *graph, const std::vector<platform::Place> &places,
const std::string &loss_var_name,
const std::vector<Scope *> &local_scopes,
const size_t &nranks,
#if defined(PADDLE_WITH_NCCL)
const bool use_cuda,
platform::NCCLCommunicator *nccl_ctxs) const;
#else
const bool use_cuda) const;
#endif
// If set true, ParallelExecutor would build the main_program into multiple
// graphs,
// each of the graphs would run with one device. This approach can achieve
// better performance
// on some scenarios.
mutable bool enable_parallel_graph_ = false;
private:
mutable bool is_finalized_ = false;
mutable std::shared_ptr<ir::PassBuilder> pass_builder_;
};
} // namespace details
} // namespace framework
} // namespace paddle