You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
303 lines
9.5 KiB
303 lines
9.5 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
#include "paddle/fluid/framework/details/multi_devices_helper.h"
|
|
#include <algorithm>
|
|
#include <unordered_set>
|
|
#include "paddle/fluid/framework/details/computation_op_handle.h"
|
|
#include "paddle/fluid/framework/details/eager_deletion_op_handle.h"
|
|
#include "paddle/fluid/framework/details/share_tensor_buffer_op_handle.h"
|
|
#include "paddle/fluid/framework/ir/graph_helper.h"
|
|
|
|
namespace paddle {
|
|
namespace framework {
|
|
namespace details {
|
|
|
|
static constexpr size_t kUndefinedDevIdx = -1UL;
|
|
|
|
// NOTE(paddle-dev): the following ops are related to multi-device
|
|
// communication. If the graph contains any of the following ops,
|
|
// it cannot separate into multiple graphs on each device.
|
|
static std::unordered_set<std::string> kMultiDeviceOps{
|
|
"sync_batch_norm",
|
|
"sync_batch_norm_grad",
|
|
"allreduce",
|
|
"c_allreduce_sum",
|
|
"c_allreduce_prod",
|
|
"c_allreduce_min",
|
|
"c_allreduce_max",
|
|
"c_allgather",
|
|
"c_reducescatter",
|
|
"c_broadcast",
|
|
"c_comm_init",
|
|
"c_comm_init_all",
|
|
"c_gen_nccl_id",
|
|
"c_sync_comm_stream",
|
|
"send",
|
|
"recv",
|
|
"send_barrier",
|
|
"fetch_barrier",
|
|
};
|
|
|
|
static size_t GetScopeIdxFromOp(const details::OpHandleBase &op) {
|
|
if (auto *compute_op =
|
|
dynamic_cast<const details::ComputationOpHandle *>(&op)) {
|
|
return kMultiDeviceOps.count(compute_op->GetOp()->Type()) == 0
|
|
? compute_op->GetScopeIdx()
|
|
: kUndefinedDevIdx;
|
|
} else if (auto *gc_op =
|
|
dynamic_cast<const details::EagerDeletionOpHandle *>(&op)) {
|
|
return gc_op->GetScopeIdx();
|
|
} else if (auto *share_op =
|
|
dynamic_cast<const details::ShareTensorBufferOpHandle *>(
|
|
&op)) {
|
|
return share_op->GetScopeIdx();
|
|
} else {
|
|
return kUndefinedDevIdx;
|
|
}
|
|
}
|
|
|
|
static bool ContainMultiDeviceOp(const ProgramDesc &program,
|
|
size_t begin_block_idx) {
|
|
for (size_t block_idx = begin_block_idx; block_idx < program.Size();
|
|
++block_idx) {
|
|
for (auto *op_desc : program.Block(block_idx).AllOps()) {
|
|
if (kMultiDeviceOps.count(op_desc->Type()) > 0) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static size_t GetUniqueDeviceIdOfOp(const details::OpHandleBase &op) {
|
|
size_t dev_idx = GetScopeIdxFromOp(op);
|
|
if (dev_idx == kUndefinedDevIdx) {
|
|
return kUndefinedDevIdx;
|
|
}
|
|
|
|
const auto &ins = op.Inputs();
|
|
const auto &outs = op.Outputs();
|
|
auto in_outs = ins;
|
|
in_outs.insert(in_outs.end(), outs.begin(), outs.end());
|
|
|
|
for (auto *var : in_outs) {
|
|
auto *var_handle = dynamic_cast<details::VarHandle *>(var);
|
|
if (var_handle == nullptr) {
|
|
continue;
|
|
}
|
|
|
|
if (dev_idx != var_handle->scope_idx()) {
|
|
return kUndefinedDevIdx;
|
|
}
|
|
}
|
|
|
|
return dev_idx;
|
|
}
|
|
|
|
static bool IsDataParallelInferenceGraphImpl(
|
|
const ir::Graph &graph,
|
|
std::unordered_map<details::OpHandleBase *, size_t> *p_op_to_dev_idx,
|
|
size_t *p_place_num) {
|
|
auto &place_num = *p_place_num;
|
|
auto &op_to_dev_idx = *p_op_to_dev_idx;
|
|
|
|
auto clear_result = [&] {
|
|
place_num = 0;
|
|
op_to_dev_idx.clear();
|
|
return false;
|
|
};
|
|
|
|
clear_result();
|
|
|
|
// If sub-block contains multi-devices ops, we cannot separate
|
|
if (ContainMultiDeviceOp(graph.OriginProgram(), 1)) {
|
|
return clear_result();
|
|
}
|
|
|
|
auto op_handles = ir::FilterByNodeWrapper<OpHandleBase>(graph);
|
|
if (op_handles.empty()) {
|
|
return clear_result();
|
|
}
|
|
|
|
for (auto &op : op_handles) {
|
|
auto dev_idx = GetUniqueDeviceIdOfOp(*op);
|
|
if (dev_idx == kUndefinedDevIdx) {
|
|
VLOG(10) << "Op " << op->Name() << " is not determined";
|
|
return clear_result();
|
|
}
|
|
place_num = std::max(place_num, dev_idx + 1);
|
|
op_to_dev_idx[op] = dev_idx;
|
|
}
|
|
|
|
for (auto &op : op_handles) {
|
|
auto dev_idx = op_to_dev_idx.at(op);
|
|
for (auto &in_var : op->Inputs()) {
|
|
if (in_var->GeneratedOp()) {
|
|
auto iter = op_to_dev_idx.find(in_var->GeneratedOp());
|
|
if (iter == op_to_dev_idx.end() || iter->second != dev_idx) {
|
|
return clear_result();
|
|
}
|
|
}
|
|
}
|
|
|
|
for (auto &out_var : op->Outputs()) {
|
|
for (auto &pending_op : out_var->PendingOps()) {
|
|
auto iter = op_to_dev_idx.find(pending_op);
|
|
if (iter == op_to_dev_idx.end() || iter->second != dev_idx) {
|
|
return clear_result();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
PADDLE_ENFORCE_GE(
|
|
place_num, 1,
|
|
platform::errors::NotFound(
|
|
"No place found, this may be a bug.\nIt would be helpful if you "
|
|
"could inform us of how this conversion went by opening a github "
|
|
"issue at https://github.com/PaddlePaddle/Paddle/issues/new. And "
|
|
"we will resolve it with high priority."));
|
|
|
|
return true;
|
|
}
|
|
|
|
bool IsDataParallelInferenceGraph(const ir::Graph &graph) {
|
|
size_t place_num;
|
|
std::unordered_map<details::OpHandleBase *, size_t> op_to_dev_idx;
|
|
return IsDataParallelInferenceGraphImpl(graph, &op_to_dev_idx, &place_num);
|
|
}
|
|
|
|
/**
|
|
* This function tries to separate the original graph into multiple graphs, in
|
|
* which each graph would only run on single device. This is usually used to
|
|
* separate a data-parallel inference graph to multiple graphs on each device.
|
|
*
|
|
* The graph can be separated into multiple single device graphs if and only if:
|
|
*
|
|
* - the graph does not contain any ops related to multi-devices communication,
|
|
* such as allreduce, send, recv, sync_batch_norm, etc.
|
|
*
|
|
* - ops on different devices do not depend on each other. That is to say, the
|
|
* graph has several disconnected sub-graphs.
|
|
*/
|
|
std::vector<std::unique_ptr<ir::Graph>> TrySeparateToMultipleSingleDeviceGraphs(
|
|
ir::Graph *graph) {
|
|
size_t place_num;
|
|
std::unordered_map<details::OpHandleBase *, size_t> op_to_dev_idx;
|
|
if (!IsDataParallelInferenceGraphImpl(*graph, &op_to_dev_idx, &place_num)) {
|
|
return {};
|
|
}
|
|
|
|
if (place_num == 1) {
|
|
return {};
|
|
}
|
|
|
|
std::vector<std::unique_ptr<ir::Graph>> graphs(place_num);
|
|
for (auto &g : graphs) {
|
|
g.reset(new ir::Graph(ProgramDesc()));
|
|
g->Set(kGraphVars, new GraphVars(1UL));
|
|
g->Set(kGraphDepVars, new GraphDepVars());
|
|
}
|
|
|
|
std::vector<VarHandle *> isolated_var_handles;
|
|
for (auto *node : graph->Nodes()) {
|
|
if (!node->IsWrappedBy<VarHandleBase>()) {
|
|
continue;
|
|
}
|
|
|
|
auto &var_handle_base = node->Wrapper<VarHandleBase>();
|
|
auto *var_handle = dynamic_cast<VarHandle *>(&var_handle_base);
|
|
if (var_handle && var_handle->PendingOps().empty() &&
|
|
var_handle->GeneratedOp() == nullptr) {
|
|
isolated_var_handles.emplace_back(var_handle);
|
|
}
|
|
}
|
|
|
|
for (auto *var_handle : isolated_var_handles) {
|
|
auto dev_idx = var_handle->scope_idx();
|
|
auto &src_vars = graph->Get<GraphVars>(kGraphVars)[dev_idx];
|
|
auto *dst_graph = graphs[dev_idx].get();
|
|
auto &dst_vars = dst_graph->Get<GraphVars>(kGraphVars)[0];
|
|
VLOG(10) << "Move isolated var " << var_handle->Name() << " at device "
|
|
<< dev_idx;
|
|
dst_graph->AddNode(graph->RemoveNode(var_handle->Node()).release());
|
|
dst_vars[var_handle->Name()].emplace_back(var_handle);
|
|
src_vars.erase(var_handle->Name());
|
|
}
|
|
|
|
for (auto &pair : op_to_dev_idx) {
|
|
auto *op = pair.first;
|
|
auto dev_idx = pair.second;
|
|
|
|
auto *ret_graph = graphs[dev_idx].get();
|
|
auto &ret_vars = ret_graph->Get<GraphVars>(kGraphVars)[0];
|
|
auto &ret_dummy_vars = ret_graph->Get<GraphDepVars>(kGraphDepVars);
|
|
auto &origin_vars = graph->Get<GraphVars>(kGraphVars)[dev_idx];
|
|
|
|
ret_graph->AddNode(graph->RemoveNode(op->Node()).release());
|
|
|
|
auto handler = [&](const std::vector<VarHandleBase *> &vars) {
|
|
for (auto *var : vars) {
|
|
if (graph->Nodes().count(var->Node()) > 0) {
|
|
ret_graph->AddNode(graph->RemoveNode(var->Node()).release());
|
|
auto *dummy_var = dynamic_cast<DummyVarHandle *>(var);
|
|
if (dummy_var == nullptr) {
|
|
ret_vars.emplace(var->Name(), origin_vars.at(var->Name()));
|
|
} else {
|
|
ret_dummy_vars.emplace(dummy_var);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
handler(op->Inputs());
|
|
handler(op->Outputs());
|
|
}
|
|
|
|
graph->Erase(kGraphVars);
|
|
graph->Erase(kGraphDepVars);
|
|
|
|
for (auto &g : graphs) {
|
|
CopyGraphAttrIfExists<ProgramDescs>(*graph, g.get(), kProgramDescs);
|
|
CopyGraphAttrIfExists<FusedVars>(*graph, g.get(), kFusedVars);
|
|
}
|
|
return graphs;
|
|
}
|
|
|
|
static bool HasDropLastReadOpImpl(const ir::Graph &graph, bool drop_last) {
|
|
auto ops = ir::FilterByNodeWrapper<OpHandleBase>(graph);
|
|
for (auto *op : ops) {
|
|
auto *compute_op = dynamic_cast<ComputationOpHandle *>(op);
|
|
if (compute_op && compute_op->GetOp()->Type() == "read" &&
|
|
compute_op->GetOp()->Attr<bool>("drop_last") == drop_last) {
|
|
VLOG(10) << "The graph has drop_last=" << drop_last << " read op";
|
|
return true;
|
|
}
|
|
}
|
|
VLOG(10) << "The graph does not have drop_last=" << drop_last << " read op";
|
|
return false;
|
|
}
|
|
|
|
bool HasDropLastReadOp(const ir::Graph &graph) {
|
|
return HasDropLastReadOpImpl(graph, true);
|
|
}
|
|
|
|
bool HasKeepLastReadOp(const ir::Graph &graph) {
|
|
return HasDropLastReadOpImpl(graph, false);
|
|
}
|
|
|
|
} // namespace details
|
|
} // namespace framework
|
|
} // namespace paddle
|