You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/framework/details/multi_devices_helper.cc

303 lines
9.5 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include <algorithm>
#include <unordered_set>
#include "paddle/fluid/framework/details/computation_op_handle.h"
#include "paddle/fluid/framework/details/eager_deletion_op_handle.h"
#include "paddle/fluid/framework/details/share_tensor_buffer_op_handle.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
namespace paddle {
namespace framework {
namespace details {
static constexpr size_t kUndefinedDevIdx = -1UL;
// NOTE(paddle-dev): the following ops are related to multi-device
// communication. If the graph contains any of the following ops,
// it cannot separate into multiple graphs on each device.
static std::unordered_set<std::string> kMultiDeviceOps{
"sync_batch_norm",
"sync_batch_norm_grad",
"allreduce",
"c_allreduce_sum",
"c_allreduce_prod",
"c_allreduce_min",
"c_allreduce_max",
"c_allgather",
"c_reducescatter",
"c_broadcast",
"c_comm_init",
"c_comm_init_all",
"c_gen_nccl_id",
"c_sync_comm_stream",
"send",
"recv",
"send_barrier",
"fetch_barrier",
};
static size_t GetScopeIdxFromOp(const details::OpHandleBase &op) {
if (auto *compute_op =
dynamic_cast<const details::ComputationOpHandle *>(&op)) {
return kMultiDeviceOps.count(compute_op->GetOp()->Type()) == 0
? compute_op->GetScopeIdx()
: kUndefinedDevIdx;
} else if (auto *gc_op =
dynamic_cast<const details::EagerDeletionOpHandle *>(&op)) {
return gc_op->GetScopeIdx();
} else if (auto *share_op =
dynamic_cast<const details::ShareTensorBufferOpHandle *>(
&op)) {
return share_op->GetScopeIdx();
} else {
return kUndefinedDevIdx;
}
}
static bool ContainMultiDeviceOp(const ProgramDesc &program,
size_t begin_block_idx) {
for (size_t block_idx = begin_block_idx; block_idx < program.Size();
++block_idx) {
for (auto *op_desc : program.Block(block_idx).AllOps()) {
if (kMultiDeviceOps.count(op_desc->Type()) > 0) {
return true;
}
}
}
return false;
}
static size_t GetUniqueDeviceIdOfOp(const details::OpHandleBase &op) {
size_t dev_idx = GetScopeIdxFromOp(op);
if (dev_idx == kUndefinedDevIdx) {
return kUndefinedDevIdx;
}
const auto &ins = op.Inputs();
const auto &outs = op.Outputs();
auto in_outs = ins;
in_outs.insert(in_outs.end(), outs.begin(), outs.end());
for (auto *var : in_outs) {
auto *var_handle = dynamic_cast<details::VarHandle *>(var);
if (var_handle == nullptr) {
continue;
}
if (dev_idx != var_handle->scope_idx()) {
return kUndefinedDevIdx;
}
}
return dev_idx;
}
static bool IsDataParallelInferenceGraphImpl(
const ir::Graph &graph,
std::unordered_map<details::OpHandleBase *, size_t> *p_op_to_dev_idx,
size_t *p_place_num) {
auto &place_num = *p_place_num;
auto &op_to_dev_idx = *p_op_to_dev_idx;
auto clear_result = [&] {
place_num = 0;
op_to_dev_idx.clear();
return false;
};
clear_result();
// If sub-block contains multi-devices ops, we cannot separate
if (ContainMultiDeviceOp(graph.OriginProgram(), 1)) {
return clear_result();
}
auto op_handles = ir::FilterByNodeWrapper<OpHandleBase>(graph);
if (op_handles.empty()) {
return clear_result();
}
for (auto &op : op_handles) {
auto dev_idx = GetUniqueDeviceIdOfOp(*op);
if (dev_idx == kUndefinedDevIdx) {
VLOG(10) << "Op " << op->Name() << " is not determined";
return clear_result();
}
place_num = std::max(place_num, dev_idx + 1);
op_to_dev_idx[op] = dev_idx;
}
for (auto &op : op_handles) {
auto dev_idx = op_to_dev_idx.at(op);
for (auto &in_var : op->Inputs()) {
if (in_var->GeneratedOp()) {
auto iter = op_to_dev_idx.find(in_var->GeneratedOp());
if (iter == op_to_dev_idx.end() || iter->second != dev_idx) {
return clear_result();
}
}
}
for (auto &out_var : op->Outputs()) {
for (auto &pending_op : out_var->PendingOps()) {
auto iter = op_to_dev_idx.find(pending_op);
if (iter == op_to_dev_idx.end() || iter->second != dev_idx) {
return clear_result();
}
}
}
}
PADDLE_ENFORCE_GE(
place_num, 1,
platform::errors::NotFound(
"No place found, this may be a bug.\nIt would be helpful if you "
"could inform us of how this conversion went by opening a github "
"issue at https://github.com/PaddlePaddle/Paddle/issues/new. And "
"we will resolve it with high priority."));
return true;
}
bool IsDataParallelInferenceGraph(const ir::Graph &graph) {
size_t place_num;
std::unordered_map<details::OpHandleBase *, size_t> op_to_dev_idx;
return IsDataParallelInferenceGraphImpl(graph, &op_to_dev_idx, &place_num);
}
/**
* This function tries to separate the original graph into multiple graphs, in
* which each graph would only run on single device. This is usually used to
* separate a data-parallel inference graph to multiple graphs on each device.
*
* The graph can be separated into multiple single device graphs if and only if:
*
* - the graph does not contain any ops related to multi-devices communication,
* such as allreduce, send, recv, sync_batch_norm, etc.
*
* - ops on different devices do not depend on each other. That is to say, the
* graph has several disconnected sub-graphs.
*/
std::vector<std::unique_ptr<ir::Graph>> TrySeparateToMultipleSingleDeviceGraphs(
ir::Graph *graph) {
size_t place_num;
std::unordered_map<details::OpHandleBase *, size_t> op_to_dev_idx;
if (!IsDataParallelInferenceGraphImpl(*graph, &op_to_dev_idx, &place_num)) {
return {};
}
if (place_num == 1) {
return {};
}
std::vector<std::unique_ptr<ir::Graph>> graphs(place_num);
for (auto &g : graphs) {
g.reset(new ir::Graph(ProgramDesc()));
g->Set(kGraphVars, new GraphVars(1UL));
g->Set(kGraphDepVars, new GraphDepVars());
}
std::vector<VarHandle *> isolated_var_handles;
for (auto *node : graph->Nodes()) {
if (!node->IsWrappedBy<VarHandleBase>()) {
continue;
}
auto &var_handle_base = node->Wrapper<VarHandleBase>();
auto *var_handle = dynamic_cast<VarHandle *>(&var_handle_base);
if (var_handle && var_handle->PendingOps().empty() &&
var_handle->GeneratedOp() == nullptr) {
isolated_var_handles.emplace_back(var_handle);
}
}
for (auto *var_handle : isolated_var_handles) {
auto dev_idx = var_handle->scope_idx();
auto &src_vars = graph->Get<GraphVars>(kGraphVars)[dev_idx];
auto *dst_graph = graphs[dev_idx].get();
auto &dst_vars = dst_graph->Get<GraphVars>(kGraphVars)[0];
VLOG(10) << "Move isolated var " << var_handle->Name() << " at device "
<< dev_idx;
dst_graph->AddNode(graph->RemoveNode(var_handle->Node()).release());
dst_vars[var_handle->Name()].emplace_back(var_handle);
src_vars.erase(var_handle->Name());
}
for (auto &pair : op_to_dev_idx) {
auto *op = pair.first;
auto dev_idx = pair.second;
auto *ret_graph = graphs[dev_idx].get();
auto &ret_vars = ret_graph->Get<GraphVars>(kGraphVars)[0];
auto &ret_dummy_vars = ret_graph->Get<GraphDepVars>(kGraphDepVars);
auto &origin_vars = graph->Get<GraphVars>(kGraphVars)[dev_idx];
ret_graph->AddNode(graph->RemoveNode(op->Node()).release());
auto handler = [&](const std::vector<VarHandleBase *> &vars) {
for (auto *var : vars) {
if (graph->Nodes().count(var->Node()) > 0) {
ret_graph->AddNode(graph->RemoveNode(var->Node()).release());
auto *dummy_var = dynamic_cast<DummyVarHandle *>(var);
if (dummy_var == nullptr) {
ret_vars.emplace(var->Name(), origin_vars.at(var->Name()));
} else {
ret_dummy_vars.emplace(dummy_var);
}
}
}
};
handler(op->Inputs());
handler(op->Outputs());
}
graph->Erase(kGraphVars);
graph->Erase(kGraphDepVars);
for (auto &g : graphs) {
CopyGraphAttrIfExists<ProgramDescs>(*graph, g.get(), kProgramDescs);
CopyGraphAttrIfExists<FusedVars>(*graph, g.get(), kFusedVars);
}
return graphs;
}
static bool HasDropLastReadOpImpl(const ir::Graph &graph, bool drop_last) {
auto ops = ir::FilterByNodeWrapper<OpHandleBase>(graph);
for (auto *op : ops) {
auto *compute_op = dynamic_cast<ComputationOpHandle *>(op);
if (compute_op && compute_op->GetOp()->Type() == "read" &&
compute_op->GetOp()->Attr<bool>("drop_last") == drop_last) {
VLOG(10) << "The graph has drop_last=" << drop_last << " read op";
return true;
}
}
VLOG(10) << "The graph does not have drop_last=" << drop_last << " read op";
return false;
}
bool HasDropLastReadOp(const ir::Graph &graph) {
return HasDropLastReadOpImpl(graph, true);
}
bool HasKeepLastReadOp(const ir::Graph &graph) {
return HasDropLastReadOpImpl(graph, false);
}
} // namespace details
} // namespace framework
} // namespace paddle