You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
77 lines
2.6 KiB
77 lines
2.6 KiB
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
import sys
|
|
from .. import core
|
|
from . import ps_instance
|
|
|
|
__all__ = ['Fleet']
|
|
|
|
|
|
class Fleet(object):
|
|
"""
|
|
|
|
"""
|
|
|
|
def __init__(self):
|
|
self.instance_ = ps_instance.PaddlePSInstance()
|
|
self.fleet_ = core.FleetWrapper()
|
|
|
|
def stop(self):
|
|
self.instance_.barrier_worker()
|
|
if self.instance.is_first_worker():
|
|
self.fleet_.stop_server()
|
|
self.instance_.barrier_worker()
|
|
self.instance_.barrier_all()
|
|
self.instance.finalize()
|
|
|
|
def init_pserver(self, opt_info):
|
|
if "fleet_desc" in opt_info:
|
|
self.dist_desc_str_ = text_format.MessageToString(opt_info[
|
|
"fleet_desc"])
|
|
self.dist_desc_ = opt_info["fleet_desc"]
|
|
else:
|
|
print(
|
|
"You should run distributed optimization to get opt_info first")
|
|
sys.exit(-1)
|
|
self.fleet_.init_server(self.dist_desc_str_)
|
|
ip = self.fleet_.start_server()
|
|
self.instance_.set_ip(ip)
|
|
self.instance.barrier_all()
|
|
ips = self.instance.gather_ips()
|
|
self.fleet.gather_servers(ips, self.instance_.get_node_cnt())
|
|
self.instance_.barrier_all()
|
|
|
|
def init_worker(self, opt_info):
|
|
if "fleet_desc" in opt_info:
|
|
self.dist_desc_str_ = text_format.MessageToString(opt_info[
|
|
"fleet_desc"])
|
|
self.dist_desc_ = opt_info["fleet_desc"]
|
|
else:
|
|
print(
|
|
"You should run distributed optimization to get opt_info first")
|
|
sys.exit(-1)
|
|
self.instance_.barrier_all()
|
|
ips = self.instance.gather_ips()
|
|
self.fleet_.init_worker(self.dist_desc_str_, ips,
|
|
self.instance_.get_node_cnt(),
|
|
self.instance._rankid)
|
|
self.instance.barrier_worker()
|
|
|
|
def init_pserver_model(self):
|
|
if self.instance_.is_first_worker():
|
|
self.fleet_.init_model()
|
|
self.instance_.barrier_worker()
|
|
|
|
def save_pserver_model(self, save_path):
|
|
self.fleet_.save_model(save_path)
|